【題目】某種商品的進(jìn)價(jià)為40元/件,以獲利不低于25%的價(jià)格銷售時(shí),商品的銷售單價(jià)y(元/件)與銷售數(shù)量x(件)(x是正整數(shù))之間的關(guān)系如下表:
x(件) | … | 5 | 10 | 15 | 20 | … |
y(元/件) | … | 75 | 70 | 65 | 60 | … |
(1)由題意知商品的最低銷售單價(jià)是___元,當(dāng)銷售單價(jià)不低于最低銷售單價(jià)時(shí),y是x的一次函數(shù).求出y與x的函數(shù)關(guān)系式及x的取值范圍;
(2)在(1)的條件下,當(dāng)銷售單價(jià)為多少元時(shí),所獲銷售利潤(rùn)最大,最大利潤(rùn)是多少元?
【答案】
(1)
解: 40(1+25%)=50(元),
故答案為:50;
設(shè)y=kx+b,
根據(jù)題意得:,
解得:k=﹣1,b=80,
∴y=﹣x+80,
根據(jù)題意得:,且x為正整數(shù),
∴0<x≤30,x為正整數(shù),
∴y=﹣x+80(0≤x≤30,且x為正整數(shù))
(2)
解:設(shè)所獲利潤(rùn)為P元,根據(jù)題意得:
P=(y﹣40)x=(﹣x+80﹣40)x=﹣(x﹣20)2+400,
即P是x的二次函數(shù),
∵a=﹣1<0,
∴P有最大值,
∴當(dāng)x=20時(shí),P最大值=400,此時(shí)y=60,
∴當(dāng)銷售單價(jià)為60元時(shí),所獲利潤(rùn)最大,最大利潤(rùn)為400元.
【解析】(1)由40(1+25%)即可得出最低銷售單價(jià);根據(jù)題意由待定系數(shù)法求出y與x的函數(shù)關(guān)系式和x的取值范圍;
(2)設(shè)所獲利潤(rùn)為P元,由題意得出P是x的二次函數(shù),即可得出結(jié)果.
【考點(diǎn)精析】掌握一元一次不等式組的應(yīng)用是解答本題的根本,需要知道1、審:分析題意,找出不等關(guān)系;2、設(shè):設(shè)未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗(yàn):從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=a(x+1)2﹣3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,﹣ ),頂點(diǎn)為D,對(duì)稱軸與x軸交于點(diǎn)H,過點(diǎn)H的直線l交拋物線于P,Q兩點(diǎn),點(diǎn)Q在y軸的右側(cè).
(1)求a的值及點(diǎn)A,B的坐標(biāo);
(2)當(dāng)直線l將四邊形ABCD分為面積比為3:7的兩部分時(shí),求直線l的函數(shù)表達(dá)式;
(3)當(dāng)點(diǎn)P位于第二象限時(shí),設(shè)PQ的中點(diǎn)為M,點(diǎn)N在拋物線上,則以DP為對(duì)角線的四邊形DMPN能否為菱形?若能,求出點(diǎn)N的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場(chǎng)急需銨肥8噸,在該農(nóng)場(chǎng)南北方向分別有一家化肥公司A、B,A公司有銨肥3噸,每噸售價(jià)750元;B公司有銨肥7噸,每噸售價(jià)700元,汽車每千米的運(yùn)輸費(fèi)用b(單位:元/千米)與運(yùn)輸重量a(單位:噸)的關(guān)系如圖所示.
(1)根據(jù)圖象求出b關(guān)于a的函數(shù)解析式(包括自變量的取值范圍);
(2)若農(nóng)場(chǎng)到B公司的路程是農(nóng)場(chǎng)到A公司路程的2倍,農(nóng)場(chǎng)到A公司的路程為m千米,設(shè)農(nóng)場(chǎng)從A公司購(gòu)買x噸銨肥,購(gòu)買8噸銨肥的總費(fèi)用為y元(總費(fèi)用=購(gòu)買銨肥費(fèi)用+運(yùn)輸費(fèi)用),求出y關(guān)于x的函數(shù)解析式(m為常數(shù)),并向農(nóng)場(chǎng)建議總費(fèi)用最低的購(gòu)買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點(diǎn)A(﹣2,0),與x軸夾角為30°,將△ABO沿直線AB翻折,點(diǎn)O的對(duì)應(yīng)點(diǎn)C恰好落在雙曲線y=(k≠0)上,則k的值為( 。
A.4
B.-2
C.
D.-
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是小志同學(xué)書桌上的一個(gè)電子相框,將其側(cè)面抽象為如圖2所示的幾何圖形,已知BC=BD=15cm,∠CBD=40°,則點(diǎn)B到CD的距離為 cm(參考數(shù)據(jù)sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,結(jié)果精確到0.1cm,可用科學(xué)計(jì)算器).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=ax+b與雙曲線y=(x>0)交于A(x1 , y1),B(x2 , y2)兩點(diǎn)(A與B不重合),直線AB與x軸交于P(x0 , 0),與y軸交于點(diǎn)C.
(1)若A,B兩點(diǎn)坐標(biāo)分別為(1,3),(3,y2),求點(diǎn)P的坐標(biāo).
(2)若b=y1+1,點(diǎn)P的坐標(biāo)為(6,0),且AB=BP,求A,B兩點(diǎn)的坐標(biāo).
(3)結(jié)合(1),(2)中的結(jié)果,猜想并用等式表示x1 , x2 , x0之間的關(guān)系(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組開展課外活動(dòng).如圖,A,B兩地相距12米,小明從點(diǎn)A出發(fā)沿AB方向勻速前進(jìn),2秒后到達(dá)點(diǎn)D,此時(shí)他(CD)在某一燈光下的影長(zhǎng)為AD,繼續(xù)按原速行走2秒到達(dá)點(diǎn)F,此時(shí)他在同一燈光下的影子仍落在其身后,并測(cè)得這個(gè)影長(zhǎng)為1.2米,然后他將速度提高到原來的1.5倍,再行走2秒到達(dá)點(diǎn)H,此時(shí)他(GH)在同一燈光下的影長(zhǎng)為BH(點(diǎn)C,E,G在一條直線上).
(1)請(qǐng)?jiān)趫D中畫出光源O點(diǎn)的位置,并畫出他位于點(diǎn)F時(shí)在這個(gè)燈光下的影長(zhǎng)FM(不寫畫法)
(2)求小明原來的速度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,觀測(cè)點(diǎn)A、旗桿DE的底端D、某樓房CB的底端C三點(diǎn)在一條直線上,從點(diǎn)A處測(cè)得樓頂端B的仰角為22°,此時(shí)點(diǎn)E恰好在AB上,從點(diǎn)D處測(cè)得樓頂端B的仰角為38.5°.已知旗桿DE的高度為12米,試求樓房CB的高度.(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com