分析 結(jié)論:BE=AC+AE,連接DB、DC,作DM⊥CA于M,首先證明△ADE≌△ADM得AM=AE,再證明△BED≌△CMD得到BE=CM=CA+AM=CA+AE得證.
解答 結(jié)論:BE=AC+AE,理由如下,
證明:連接DB、DC作DM⊥CA于M,
∵DA平分∠MAB,DE⊥AB,DM⊥AM,
∴DE=DM,∠DEB=∠DMC=90°,
在RT△ADE和RT△ADM中,
$\left\{\begin{array}{l}{AD=AD}\\{DE=DM}\end{array}\right.$,
∴△ADE≌△ADM,
∴AE=AM,
∵DF垂直平分BC,
∴DB=DC,
在RT△BED和RT△CMD中,
$\left\{\begin{array}{l}{DB=DC}\\{DE=DM}\end{array}\right.$,
∴△BED≌△CMD,
∴BE=CM,
∴BE=AC+AM=AC+AE.
點(diǎn)評(píng) 本題考查全等三角形的判定和性質(zhì)、角平分線的性質(zhì)、垂直平分線的性質(zhì)等知識(shí),添加輔助線構(gòu)造全等三角形是解決問(wèn)題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ∠1=∠2 | B. | ∠1=∠3 | C. | ∠1+∠4=180° | D. | ∠4=∠5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com