如圖,平行四邊形ABCD中,BC=12,M為BC中點(diǎn),M到AD的距離為8.若分別以B、C為圓心,BM長(zhǎng)為半徑畫弧,交AB、CD于E、F兩點(diǎn),則圖中斜線區(qū)域面積為( )

A.96-12π
B.96-18π
C.96-24π
D.96-27π
【答案】分析:由平行四邊形的鄰角互補(bǔ),可知:∠B與∠C的度數(shù)和為180°,而扇形BEM和扇形CMF的半徑相等,因此兩個(gè)扇形的面積和正好是一個(gè)半圓的面積,因此陰影部分的面積可用?ABCD和以BM為半徑的半圓的面積差來(lái)求得.
解答:解:∵四邊形ABCD是平行四邊形
∴∠B+∠C=180°,
∴S扇形BEM+S扇形CMF=π•62=18π,
∴S陰影=S?ABCD-(S扇形BEM+S扇形CMF)=12×8-18π=96-18π.
故選B.
點(diǎn)評(píng):此題主要考查平行四邊形的性質(zhì)和扇形面積的計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平行四邊形ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長(zhǎng)是關(guān)于x的一元二精英家教網(wǎng)次方程x2-7x+12=0的兩個(gè)根,且OA>OB.
(1)求
OA
AB
的值.
(2)若E為x軸上的點(diǎn),且S△AOE=
16
3
,求經(jīng)過(guò)D、E兩點(diǎn)的直線的解析式,并判斷△AOE與△DAO是否相似?
(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)直接寫出F點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,平行四邊形ABCD中,∠ABC的角平分線BE交AD于E點(diǎn),AB=3,ED=1,則平行四邊形ABCD的周長(zhǎng)是
14

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=
5
,對(duì)角線AC、BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一定角度后,分別交BC、AD于點(diǎn)E、F.
精英家教網(wǎng)
(1)試說(shuō)明在旋轉(zhuǎn)過(guò)程中,線段AF與EC總保持相等;
(2)當(dāng)旋轉(zhuǎn)角為90°時(shí),在圖2中畫出直線AC旋轉(zhuǎn)后的位置并證明此時(shí)四邊形ABEF是平行四邊形;
(3)在直線AC旋轉(zhuǎn)過(guò)程中,四邊形BEDF可能是菱形嗎?如果不能,請(qǐng)說(shuō)明理由;如果能,說(shuō)明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).(圖供畫圖或解釋時(shí)使用)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,平行四邊形ABCD中,對(duì)角線AC和BD相交于點(diǎn)O,如果AC=12,BD=10,AB=m,那么m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平行四邊形ABCD的兩條對(duì)角線AC、BD相交于點(diǎn)O,AB=5,AC=6,DB=8,則四邊形ABCD是的周長(zhǎng)為
20
20

查看答案和解析>>

同步練習(xí)冊(cè)答案