分析 (1)連結(jié)OA,如圖,根據(jù)垂徑定理得AE=BE=12AB=4,然后在Rt△AOE中利用勾股定理計(jì)算出OA即可;
(2)連結(jié)OA,如圖,根據(jù)垂徑定理得AE=BE=12AB=6.4,再在Rt△AOE中利用勾股定理計(jì)算出OE=4.8,然后計(jì)算OD-OE即可.
解答 解:(1)連結(jié)OA,如圖,
∵CD⊥AB,
∴AE=BE=12AB=4,
在Rt△AOE中,∵AE=4,OE=3,
∴OA=√32+42=5,
即⊙O的半徑為5;
(2)連結(jié)OA,如圖,
∵CD⊥AB,
∴AE=BE=12AB=6.4,
在Rt△AOE中,∵AO=8,AE=6.4,
∴OE=√82−6.42=4.8,
∴DE=OD-OE=8-4.8=3.2.
故答案為5,3.2.
點(diǎn)評(píng) 本題考查了垂徑定理:垂直弦的直徑平分這條弦,并且平分弦所對(duì)的兩條�。鉀Q本題常作的輔助線是畫(huà)半徑得到由弦心距、半徑和弦的一半組成的直角三角形,然后利用勾股定理進(jìn)行幾何計(jì)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 100-120×(-0.20)-200×0.1-20 | B. | 100+120×(-0.20)-200×0.1-20 | ||
C. | 100+120×0.20-200×0.1-20 | D. | 100+(-120)×(-0.20)+(-200)×(-0.1)-20 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com