將圖中的圖形繞圓心按逆時針方向旋轉(zhuǎn)90°,作出旋轉(zhuǎn)后的圖形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宜興市一模)如圖1,正方形ABCD的邊長為a(a為常數(shù)),對角線AC、BD相交于點O,將正方形KPMN(KN>
1
2
AC)的頂點K與點O重合,若繞點K旋轉(zhuǎn)正方形KPMN,不難得出,兩個正方形重合部分的面積始終是正方形ABCD面積的四分之一.

(1)①在旋轉(zhuǎn)過程中,正方形ABCD的邊被正方形KPMN覆蓋部分總長度是定值嗎?如果是,請求出這個定值,如果不是,請說明理由.
②如圖2,若將上題中正方形ABCD改為正n邊形,正方形KPMN改為半徑足夠長的扇形,并將扇形的圓心繞點O旋轉(zhuǎn),設(shè)正n邊形的邊長為a,面積為S,當(dāng)扇形的圓心角為
360
n
360
n
°時,兩個圖形重合部分的面積是
s
n
,這時正n邊形的邊被扇形覆蓋部分的總長度為
a
a

(2)如圖3,在正方形KNMP旋轉(zhuǎn)過程中,記KP與AD的交點為E,KN與CD的交點為F.連接EF,令A(yù)E=x,S△OEF=S,當(dāng)正方形ABCD的邊長為2時,試寫出S關(guān)于x的函數(shù)關(guān)系式,并求出x為何值時S取最值,最值是多少.
(3)若將這兩張正方形按如圖4所示方式疊放,使K點與CD的中點E重合(AB≤
KM
2
),正方形ABCD以1cm/s的速度沿射線KM運動,當(dāng)正方形ABCD完全進入正方形KPMN時即停止運動,正方形ABCD的邊長為8cm,且CD⊥KM,求兩正方形重疊部分面積y與運動時間t之間的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案