觀察下列算式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,請你在觀察規(guī)律之后并用你得到的規(guī)律填空:________×________+________=502

48    52    4
分析:觀察上面等式的規(guī)律,若第1個數(shù)為n,則第二個數(shù)為n+4,第三個數(shù)為4,第四個數(shù)為(n+2)2,由此規(guī)律代入即可.
解答:第n個式子為n(n+4)+4=(n+2)2,由題意得n+2=50,則n=48,代入得,48×+4=502,
故答案為48,52,4.
點評:本題考查了數(shù)字的變化規(guī)律,得出第n個式子的表達式是解決此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

10、觀察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…則230的尾數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、觀察下列算式:32-12=8,52-32=16,72-52=24,92-72=32,…,請將你發(fā)現(xiàn)的規(guī)律用式子表示出來:
(2n+1)2-(2n-1)2=8n

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

觀察下列算式:
①1×3-22=3-4=-1
②2×4-32=8-9=-1
③3×5-42=15-16=-1
4×6-52=24-25=-1
4×6-52=24-25=-1


(1)請你按以上規(guī)律寫出第4個算式;
4×6-52=24-25=-1
4×6-52=24-25=-1

(2)把這個規(guī)律用含字母的式子表示出來;
n×(n+2)-(n+1)2=-1
n×(n+2)-(n+1)2=-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

觀察下列算式:71=7,72=49,73=343,74=2401,75=16807,76=117649,…,通過觀察,用你發(fā)現(xiàn)的規(guī)律,寫出72012的末位數(shù)字
1
1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

觀察下列算式:
21=2;22=4;23=8;24=16;25=32;26=64;27=128;28=256;

(1)通過觀察發(fā)現(xiàn)2n的個位數(shù)字是由
4
4
種數(shù)字組成的,它們分別是
2、4、8、6
2、4、8、6

(2)用你所發(fā)現(xiàn)的規(guī)律寫出89的末位數(shù)是
2
2

(3)22003的末位數(shù)是
8
8

查看答案和解析>>

同步練習冊答案