如圖,AB是⊙O的切線,A為切點,AC是⊙O的弦,過O作OH⊥AC于點H.若AC=8,AB=12,BO=13,求:
(1)⊙O的半徑;
(2)把
AC
沿弦AC向上翻轉180°,問翻轉后的
AC
是否經(jīng)過圓心O,并說明理由.
(1)∵AB是⊙O的切線,A為切點,
∴∠BAO=90°,
∵AB=12,BO=13,
∴OA=
OB2-AB2
=
132-122
=5;

(2)不經(jīng)過,
∵AH=8÷2=4,
∴OH=
52-42
=3,
∵3×2>5,
∴翻轉后的
AC
不經(jīng)過圓心O.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,矩形ABCD的邊AD、AB分別與⊙O相切于點E、F,AE=
3

(1)求
EF
的長;
(2)若AD=
3
+5
,直線MN分別交射線DA、DC于點M、N,∠DMN=60°,將直線MN沿射線DA方向平移,設點D到直線的距離為d,當時1≤d≤4,請判斷直線MN與⊙O的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB是⊙O的直徑,點P在BA的延長線上,PC是⊙O的切線,C為切點,PC=2,PB=4,則⊙O的半徑等于( 。
A.1B.2C.
3
2
D.
6
2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,PA與⊙O切于點A,PBC是⊙O的割線,如果PB=BC=2,那么PA的長為( 。
A.2B.2
2
C.4D.8

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB,BC,CD分別與⊙O相切于E,F(xiàn),G,且ABCD,BO=6cm,CO=8cm.求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1所示,在正方形ABCD中,AB=1,
AC
是以點B為圓心,AB長為半徑的圓的一段弧,點E是邊AD上的任意一點(點E與點A、D不重合),過E作AC所在圓的切線,交邊DC于點F,G為切點.
(1)當∠DEF=45°時,求證:點G為線段EF的中點;
(2)設AE=x,F(xiàn)C=y,求y關于x的函數(shù)解析式,并寫出函數(shù)的定義域;
(3)圖2所示,將△DEF沿直線EF翻折后得△D1EF,當EF=
5
6
時,討論△AD1D與△ED1F是否相似,如果相似,請加以證明;如果不相似,只要求寫出結論,不要求寫出理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知AC是⊙O的直徑,MA,MB分別切⊙O于點A,B.
(1)如圖1,若∠BAC=25°,求∠AMB的大;
(2)如圖2,過點B作BD⊥AC,交AC于點E,交⊙O于點D,連接AD,若BD=AM=2
3

①求∠AMB的大小;
②圖中陰影部分的面積為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,PA,PB分別是⊙O的切線,A,B分別為切點,點E是⊙O上一點,且∠AEB=60°,則∠P為( 。
A.120°B.60°C.30°D.45°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

△ABC中,∠C=90°,AB切⊙O于D,且DEBC,已知AE=2
2
,AC=3
2
,BC=6,則圓O的半徑是______.

查看答案和解析>>

同步練習冊答案