【題目】12分)閱讀理解:

如圖,如果四邊形ABCD滿足AB=ADCB=CD,∠B=∠D=90°,那么我們把這樣的四邊形叫做完美箏形

將一張如圖所示的完美箏形紙片ABCD先折疊成如圖所示形狀,再展開得到圖,其中CE,CF為折痕,∠BCE=∠ECF=∠FCD,點(diǎn)B′為點(diǎn)B的對(duì)應(yīng)點(diǎn),點(diǎn)D′為點(diǎn)D的對(duì)應(yīng)點(diǎn),連接EB′FD′相交于點(diǎn)O

簡(jiǎn)單應(yīng)用:

1)在平行四邊形、矩形、菱形、正方形四種圖形中,一定為完美箏形的是 ;

2)當(dāng)圖中的∠BCD=120°時(shí),∠AEB′= °;

3)當(dāng)圖中的四邊形AECF為菱形時(shí),對(duì)應(yīng)圖中的完美箏形 個(gè)(包含四邊形ABCD).

拓展提升:

4)當(dāng)圖中的∠BCD=90°時(shí),連接AB′,請(qǐng)?zhí)角?/span>∠AB′E的度數(shù),并說(shuō)明理由.

【答案】1)正方形;(280;(35;(445°

【解析】試題(1)結(jié)合平行四邊形、矩形、菱形、正方形的性質(zhì)和完美箏形的定義可以得出結(jié)論;

2)先證∠AEB′=∠BCB′,再算出∠BCE=∠ECF=40°,即可得出結(jié)果;

3)由折疊的性質(zhì)得出BE=B′E,BC=B′C,∠B=∠CB′E=90°CD=CD′,FD=FD′,∠D=∠CD′F=90°,即可得出四邊形EBCB′、四邊形FDCD′完美箏形,由題意得出∠OD′E=∠OB′F=90°,CD′=CB′,由菱形的性質(zhì)得出AE=AF,CE=CF,再證明△OED′≌△OFB′,得出OD′=OB′OE=OF,證出∠AEB′=∠AFD′=90°,即可得出四邊形CD′OB′、四邊形AEOF完美箏形;即可得出結(jié)論;

4)當(dāng)圖中的BCD=90°時(shí),四邊形ABCD是正方形,證明A、E、B′F四點(diǎn)共圓,得到,由圓周角定理即可得到AB′E的度數(shù).

試題解析:(1①∵四邊形ABCD是平行四邊形,∴AB=CDAD=BC,∠A=∠C≠90°,∠B=∠D≠90°,∴AB≠AD,BC≠CD,平行四邊形不一定為完美箏形;

②∵四邊形ABCD是矩形,∴∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC∴AB≠AD,BC≠CD矩形不一定為完美箏形;

③∵四邊形ABCD是菱形,∴AB=BC=CD=AD,∠A=∠C≠90°,∠B=∠D≠90°,菱形不一定為完美箏形;

④∵四邊形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,正方形一定為完美箏形;

在平行四邊形、矩形、菱形、正方形四種圖形中,一定為完美箏形的是正方形;故答案為:正方形;

2)根據(jù)題意得:∠B′=∠B=90°,在四邊形CBEB′中,∠BEB′+∠BCB′=180°,∵∠AEB′+∠BEB′=180°,∴∠AEB′=∠BCB′∵∠BCE=∠ECF=∠FCD,∠BCD=120°,∴∠BCE=∠ECF=40°,∴∠AEB′=∠BCB′=40°+40°=80°;故答案為:80;

3)當(dāng)圖中的四邊形AECF為菱形時(shí),對(duì)應(yīng)圖中的完美箏形5個(gè);理由如下;

根據(jù)題意得:BE=B′EBC=B′C,∠B=∠CB′E=90°CD=CD′,FD=FD′,∠D=∠CD′F=90°,四邊形EBCB′、四邊形FDCD′完美箏形;

四邊形ABCD完美箏形,∴AB=AD,CB=CD,∠B=∠D=90°∴CD′=CB′,∠CD′O=∠CB′O=90°,∴∠OD′E=∠OB′F=90°,四邊形AECF為菱形,∴AE=AF,CE=CF,AE∥CF,AF∥CE,∴D′E=B′F∠AEB′=∠CB′E=90°∠AFD′=∠CD′F=90°,在△OED′△OFB′中,∵∠OD′E=∠OB′F,∠EOD′=∠FOB′,D′E=B′F,∴△OED′≌△OFB′AAS),∴OD′=OB′OE=OF,四邊形CD′OB′、四邊形AEOF完美箏形

包含四邊形ABCD,對(duì)應(yīng)圖中的完美箏形5個(gè);故答案為:5;

4)當(dāng)圖中的BCD=90°時(shí),如圖所示:四邊形ABCD是正方形,∴∠A=90°,∵∠EB′F=90°,∴∠A+EB′F=180°A、E、B′、F四點(diǎn)共圓,AE=AF,∴∠AB′E=AB′F=EB′F=45°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖 1,在ABC 中,ACB90°,BCAC,點(diǎn) D AB 上,DEAB BC E,點(diǎn) F AE 的中點(diǎn)

1 寫出線段 FD 與線段 FC 的關(guān)系并證明;

2 如圖 2,將BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)αα90°),其它條件不變,線段 FD 與線段 FC 的關(guān)系是否變化,寫出你的結(jié)論并證明;

3 BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)一周,如果 BC4,BE2,直接寫出線段 BF 的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】居民區(qū)內(nèi)的廣場(chǎng)舞引起媒體關(guān)注,遼寧都市頻道為此進(jìn)行過(guò)專訪報(bào)道.小平想了解本小區(qū)居民對(duì)廣場(chǎng)舞的看法,進(jìn)行了一次抽樣調(diào)查,把居民對(duì)廣場(chǎng)舞的看法分為四個(gè)層次:A.非常贊同;B.贊同但要有時(shí)間限制;C.無(wú)所謂;D.不贊同.并將調(diào)查結(jié)果繪制了圖1和圖2兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:

1)求本次被抽查的居民有多少人?

2)將圖1和圖2補(bǔ)充完整;

3)求圖2“C”層次所在扇形的圓心角的度數(shù);

4)估計(jì)該小區(qū)4000名居民中對(duì)廣場(chǎng)舞的看法表示贊同(包括A層次和B層次)的大約有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用32m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)ABxm

(1)若花園的面積為252m2,求x的值;

(2)若在P處有一棵樹與墻CD,AD的距離分別是17m6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ABC中,∠B=90°,AB=6cm,BC=8cm.

(1)點(diǎn)P從點(diǎn)A開始沿AB邊向B以1cm/s的速度移動(dòng),點(diǎn)Q從B點(diǎn)開始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).如果P,Q分別從A,B同時(shí)出發(fā),經(jīng)過(guò)幾秒,使PBQ的面積等于8cm2?

(2)點(diǎn)P從點(diǎn)A開始沿AB邊向B以1cm/s的速度移動(dòng),點(diǎn)Q從B點(diǎn)開始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).如果P,Q分別從A,B同時(shí)出發(fā),線段PQ能否將ABC分成面積相等的兩部分?若能,求出運(yùn)動(dòng)時(shí)間;若不能說(shuō)明理由.

(3)若P點(diǎn)沿射線AB方向從A點(diǎn)出發(fā)以1cm/s的速度移動(dòng),點(diǎn)Q沿射線CB方向從C點(diǎn)出發(fā)以2cm/s的速度移動(dòng),P,Q同時(shí)出發(fā),問(wèn)幾秒后,PBQ的面積為1?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,將繞點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)得到,當(dāng)點(diǎn)落在邊上時(shí),的延長(zhǎng)線恰好經(jīng)過(guò)點(diǎn),則的長(zhǎng)為(

A. 1B. C. -1+D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐--------圖形變換中的數(shù)學(xué)問(wèn)題

問(wèn)題情境:

如圖1,已知矩形中,點(diǎn)的中點(diǎn),連接.將矩形沿剪開,得到四邊形和四邊形

1)求證:四邊形是矩形;

操作探究:

保持矩形位置不變,將矩形從圖1的位置開始,繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn),設(shè)旋轉(zhuǎn)角為).操作中,提出了如下向題,請(qǐng)你解答:

2)如圖2,當(dāng)矩形旋轉(zhuǎn)到點(diǎn)落在線段上時(shí),線段恰好經(jīng)過(guò)點(diǎn),設(shè)相交于點(diǎn).判斷四邊形的形狀,并說(shuō)明理由;

3)請(qǐng)從兩題中任選一題作答,我選擇題.

A.在矩形旋轉(zhuǎn)過(guò)程中,連接線段.當(dāng)時(shí),直接寫出旋轉(zhuǎn)角的度數(shù).

B.已知矩形中,.在矩形旋轉(zhuǎn)過(guò)程中,連接線段,當(dāng)時(shí),直接寫出的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校九年級(jí)為了解學(xué)生課堂發(fā)言情況,隨機(jī)抽取該年級(jí)部分學(xué)生,對(duì)他們某天在課堂上發(fā)言的次數(shù)進(jìn)行了統(tǒng)計(jì),其結(jié)果如下表,并繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,已知B、E兩組發(fā)言人數(shù)的比為5:2,請(qǐng)結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問(wèn)題:

(1)則樣本容量容量是______________,并補(bǔ)全直方圖;

(2)該年級(jí)共有學(xué)生500人,請(qǐng)估計(jì)全年級(jí)在這天里發(fā)言次數(shù)不少于12的次數(shù);

(3)已知A組發(fā)言的學(xué)生中恰有1位女生,E組發(fā)言的學(xué)生中有2位男生,現(xiàn)從A組與E組中分別抽一位學(xué)生寫報(bào)告,請(qǐng)用列表法或畫樹狀圖的方法,求所抽的兩位學(xué)生恰好是一男一女的概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于⊙OA的中點(diǎn),AEACA,與⊙OCB的延長(zhǎng)線交于點(diǎn)FE,且.

(1)求證:△ADC∽△EBA

(2)如果AB8,CD5,求tan∠CAD的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案