已知:如圖,D是△ABC中BC邊上一點,E是AD上的一點,EB=EC,∠ABE=∠ACE,求證:∠BAE=∠CAE.
分析:由EB=EC,根據(jù)等腰三角形的性質得到∠EBD=∠ECD,而∠ABE=∠ACE,則∠ABC=∠ACB,根據(jù)等腰三角形的判定得AB=AC,有EB=EC,AE為公共邊,根據(jù)全等三角形的判定易得△ABE≌△ACE,由全等的性質即可得到結論.
解答:證明:∵EB=EC,
∴∠EBD=∠ECD,
又∵∠ABE=∠ACE,
∴∠ABC=∠ACB,
∴AB=AC,
在△ABE和△ACE中
AB=AC
EB=EC
AE=AE

∴△ABE≌△ACE,
∴∠BAE=∠CAE.
點評:本題考查了全等三角形的判定與性質:三條邊對應相等的兩個三角形全等;全等三角形的對應角相等.也考查了等腰三角形的判定與性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

28、已知:如圖,E是△ABC的邊CA延長線上一點,F(xiàn)是AB上一點,D點在BC的延長線上.試證明∠1<∠2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2001•東城區(qū))已知:如圖,AB是半圓O的直徑,C為AB上一點,AC為半圓O′的直徑,BD切半圓O′于點D,CE⊥AB交半圓O于點F.
(1)求證:BD=BE;
(2)若兩圓半徑的比為3:2,試判斷∠EBD是直角、銳角還是鈍角?并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2004•西藏)已知,如圖,P是⊙O外一點,PC切⊙O于點C,割線PO交⊙O于點B、A,且AC=PC.
(1)求證:△PBC≌AOC;
(2)如果PB=2,點M在⊙O的下半圈上運動(不與A、B重合),求當△ABM的面積最大時,AC•AM的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,P是∠AOB的角平分線OC上一點.PE⊥OA于E.以P點為圓心,PE長為半徑作⊙P.求證:⊙P與OB相切.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,AD是一條直線,∠1=65°,∠2=115°.求證:BE∥CF.

查看答案和解析>>

同步練習冊答案