已知,關(guān)于x的一元二次方程x2-(a-4)x-a+3=0(a<0).
(1)求證:方程一定有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程的兩個(gè)實(shí)數(shù)根分別為x1,x2(其中x1<x2),若y是關(guān)于a的函數(shù),且y=,求這個(gè)函數(shù)的解析式;
(3)在(2)的條件下,利用函數(shù)圖象,求關(guān)于a的方程y+a+1=0的解.

【答案】分析:(1)求證:方程一定有兩個(gè)不相等的實(shí)數(shù)根,就是證明方程的判別式△>0即可;
(2)由求根公式及兩根關(guān)系確定x1,x2代入求得y.即可求得函數(shù)解析式;
(3)a<0及一次函數(shù),反比例函數(shù)的作圖法求出a的值.
解答:解:(1)△=(a-4)2+4(a-3)=a2-4a+4=(a-2)2
∵a<0,∴(a-2)2>0.
∴方程一定有兩個(gè)不相等的實(shí)數(shù)根;

(2),
∴x=a-3或
∵a<0,x1<x2
∴x1=a-3,x2=-1,
(a<0);

(3)如圖,在同一平面直角坐標(biāo)系中分別畫(huà)出(a<0)和y=-a-1(a<0)的圖象.
由圖象可得當(dāng)a<0時(shí),方程y+a+1=0的解是a=-2.
點(diǎn)評(píng):本題考查了一元二次方程根的判別式的應(yīng)用,利用求根公式正確求得方程的根,是解題的關(guān)鍵,并且本題利用函數(shù)的圖象解題,體現(xiàn)了數(shù)形結(jié)合的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:關(guān)于x的一元二次方程mx2-(2m+n)x+m+n=0①.
(1)求證:方程①有兩個(gè)實(shí)數(shù)根;
(2)求證:方程①有一個(gè)實(shí)數(shù)根為1;
(3)設(shè)方程①的另一個(gè)根為x1,若m+n=2,m為正整數(shù)且方程①有兩個(gè)不相等的整數(shù)根時(shí),確定關(guān)于x的二次函數(shù)y=mx2-(2m+n)x+m+n的解析式;
(4)在(3)的條件下,把Rt△ABC放在坐標(biāo)系內(nèi),其中∠CAB=90°,點(diǎn)A、B的坐標(biāo)分別為(1,0)、(4,0),BC=5,將△ABC沿x軸向右平移,當(dāng)點(diǎn)C落在拋物線(xiàn)上時(shí),求△ABC平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、已知:關(guān)于x的一元二次方程ax2+bx+c=3的一個(gè)根為x=2,且二次函數(shù)y=ax2+bx+c的對(duì)稱(chēng)軸是直線(xiàn)x=2,則拋物線(xiàn)的頂點(diǎn)坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:關(guān)于x的一元二次方程x2-2(m+1)x+m2=0有兩個(gè)整數(shù)根,m<5且m為整數(shù).
(1)求m的值;
(2)當(dāng)此方程有兩個(gè)非零的整數(shù)根時(shí),將關(guān)于x的二次函數(shù)y=x2-2(m+1)x+m2的圖象沿x軸向左平移4個(gè)單位長(zhǎng)度,求平移后的二次函數(shù)圖象的解析式;
(3)當(dāng)直線(xiàn)y=x+b與(2)中的兩條拋物線(xiàn)有且只有三個(gè)交點(diǎn)時(shí),求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:關(guān)于x的一元二次方程x2-2x+c=0的一個(gè)實(shí)數(shù)根為3.
(1)求c的值;
(2)二次函數(shù)y=x2-2x+c,當(dāng)-2<x≤2時(shí),y的取值范圍;
(3)二次函數(shù)y=x2-2x+c與x軸交于點(diǎn)A、B(A左B右),頂點(diǎn)為點(diǎn)C,問(wèn):是否存在這樣的點(diǎn)P,以P為位似中心,將△ABC放大為原來(lái)的2倍后得到△DEF(即△EDF∽△ABC,相似比為2),使得點(diǎn)D、E恰好在二次函數(shù)上且DE∥AB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•延慶縣二模)已知:關(guān)于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有實(shí)根,求m的取值范圍;
(2)在(1)的條件下,且m取最小的整數(shù),求此時(shí)方程的兩個(gè)根;
(3)在(2)的前提下,二次函數(shù)y=mx2-(2m+2)x+m-1與x軸有兩個(gè)交點(diǎn),連接這兩點(diǎn)間的線(xiàn)段,并以這條線(xiàn)段為直徑在x軸的上方作半圓P,設(shè)直線(xiàn)l的解析式為y=x+b,若直線(xiàn)l與半圓P只有兩個(gè)交點(diǎn)時(shí),求出b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案