【題目】如圖,在菱形ABCD中,P是對(duì)角線AC上任一點(diǎn)(不與A,C重合),連接BP,DP,過(guò)P作PE∥CD交AD于E,過(guò)P作PF∥AD交CD于F,連接EF.
(1)求證:△ABP≌△ADP;
(2)若BP=EF,求證:四邊形EPFD是矩形.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
試題(1)根據(jù)菱形的性質(zhì)得出∠DAP=∠PAB,AD=AB,再利用全等三角形的判定得出△ABP≌△ADP即可;
(2)先證明四邊形EPFD是平行四邊形,再由全等三角形的性質(zhì)得出BP=DP,由已知證出DP=EF,即可得出結(jié)論.
試題解析:(1)證明:∵點(diǎn)P是菱形ABCD對(duì)角線AC上的一點(diǎn),
∴∠DAP=∠PAB,AD=AB,
∵在△APB和△APD中,
,
∴△ABP≌△ADP(SAS);
(2)證明:∵PE∥CD,PF∥AD,
∴四邊形EPFD是平行四邊形,
由(1)得:△ABP≌△ADP,
∴BP=DP,
又∵BP=EF,
∴DP=EF,
∴四邊形EPFD是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC與△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.給出下列結(jié)論:①AF=AC;②DF=CF;③∠AFC=∠C;④∠BFD=∠CAF.
其中正確的結(jié)論個(gè)數(shù)有. ( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1 ,等腰直角三角形 ABC 中,∠ACB=90°,CB=CA,直線 DE 經(jīng)過(guò)點(diǎn) C,過(guò) A 作 AD⊥DE 于點(diǎn) D,過(guò) B 作 BE⊥DE 于點(diǎn) E,則△BEC≌△CDA,我們稱這種全等模型為 “K 型全等”.(不需要證明)
(模型應(yīng)用)若一次函數(shù) y=kx+4(k≠0)的圖像與 x 軸、y 軸分別交于 A、B 兩點(diǎn).
(1)如圖 2,當(dāng) k=-1 時(shí),若點(diǎn) B 到經(jīng)過(guò)原點(diǎn)的直線 l 的距離 BE 的長(zhǎng)為 3,求點(diǎn) A 到直線 l 的距離 AD 的長(zhǎng);
(2)如圖 3,當(dāng) k=- 時(shí),點(diǎn) M 在第一象限內(nèi),若△ABM 是等腰直角三角形,求點(diǎn)
M 的坐標(biāo);
(3)當(dāng) k 的取值變化時(shí),點(diǎn) A 隨之在 x 軸上運(yùn)動(dòng),將線段 BA 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn) 90° 得到 BQ,連接 OQ,求 OQ 長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用配方法解下列方程時(shí),配方有錯(cuò)誤的是( )
A.x2﹣2x﹣99=0化為(x﹣1)2=100
B.x2+8x+9=0化為(x+4)2=25
C.2t2﹣7t﹣4=0化為(t﹣)2=
D.3x2﹣4x﹣2=0化為(x﹣)2=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知E、F、G、H分別為菱形ABCD四邊的中點(diǎn),AB=6cm,∠ABC=60°,則四邊形EFGH的面積為__cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列4個(gè)命題:其中真命題是( )
(1)三角形的外角和是180°;(2)三角形的三個(gè)內(nèi)角中至少有兩個(gè)銳角;
(3)如果<0,那么y<0;(4)直線a、b、c,如果a⊥b、b⊥c,那么a⊥c.
A. (1)(2) B. (2)(3) C. (2)(4) D. (3)(4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)定義一種新運(yùn)算,規(guī)定: (其中均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如: .
(1)已知.
①求的值:
②若關(guān)于的不等式組無(wú)解,求實(shí)數(shù)的取值范圍.
(2)若對(duì)任意實(shí)數(shù)都成立(這里和均有意義),則應(yīng)滿足怎樣的關(guān)系式
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P為正方形ABCD的邊CD上一點(diǎn),BP的垂直平分線EF分別交BC、AD于E、F兩點(diǎn),GP⊥EP交AD于點(diǎn)G,連接BG交EF于點(diǎn) H,下列結(jié)論:①BP=EF;②∠FHG=45°;③以BA為半徑⊙B與GP相切;④若G為AD的中點(diǎn),則DP=2CP.其中正確結(jié)論的序號(hào)是( 。
A. ①②③④ B. 只有①②③ C. 只有①②④ D. 只有①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校與圖書館在同一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)目的地兩人之間的距離y(米)與時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖所示
(1)根據(jù)圖象信息,當(dāng)t= 分鐘時(shí)甲乙兩人相遇,甲的速度為 米/分鐘;
(2)求出線段AB所表示的函數(shù)表達(dá)式
(3)甲、乙兩人何時(shí)相距400米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com