【題目】如圖,矩形ABCD中,E是AD的中點(diǎn),將△ABE沿直線BE折疊后得到△GBE,延長(zhǎng)BG交CD于點(diǎn)F.若AB=6,BC=10,則FD的長(zhǎng)為( )
A. B.4 C. D.5
【答案】C
【解析】
試題分析:根據(jù)點(diǎn)E是AD的中點(diǎn)以及翻折的性質(zhì)可以求出AE=DE=EG,然后利用“HL”證明△EDF和△EGF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可證得DF=GF;設(shè)FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式進(jìn)行計(jì)算即可得解.
解:∵E是AD的中點(diǎn),
∴AE=DE,
∵△ABE沿BE折疊后得到△GBE
∴AE=EG,AB=BG,
∴ED=EG,
∵在矩形ABCD中,
∴∠A=∠D=90°,
∴∠EGF=90°,
∵在Rt△EDF和Rt△EGF中,
,
∴Rt△EDF≌Rt△EGF(HL),
∴DF=FG,
設(shè)DF=x,則BF=6+x,CF=6﹣x,
在Rt△BCF中,102+(6﹣x)2=(6+x)2,
解得x=.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,已知點(diǎn)E在直角△ABC的斜邊AB上,以AE為直徑的⊙O與直角邊BC相切于點(diǎn)D.
(1)求證:AD平分∠BAC;
(2)若BE=2,BD=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知x=﹣2是方程x2﹣4x+c=0的一個(gè)根,則c的值是( )
A. ﹣12 B. ﹣4 C. 4 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在平行四邊形ABCD中,AC、BD相交于O點(diǎn),點(diǎn)E、F分別為BO、DO的中點(diǎn),連接AF,CE.
(1)求證:四邊形AECF是平行四邊形;
(2)如果E,F(xiàn)點(diǎn)分別在DB和BD的延長(zhǎng)線上時(shí),且滿足BE=DF,上述結(jié)論仍然成立嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【課本引申】
我們知道,三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.那么,三角形的一個(gè)內(nèi)角與它不相鄰的兩個(gè)外角的和之間存在怎樣的數(shù)量關(guān)系呢?
【嘗試探究】
(1)如圖1,∠DBC與∠ECB分別為△ABC的兩個(gè)外角,試探究∠A與∠DBC+∠ECB之間存在怎樣的數(shù)量關(guān)系?為什么?
【拓展運(yùn)用】
(2)如圖2,在△ABC紙片中剪去△CED,得到四邊形ABDE,若∠1+∠2=230°,則剪掉的∠C=_________;
(3)小明聯(lián)想到了曾經(jīng)解決的一個(gè)問(wèn)題:如圖3,在△ABC中,BP、CP分別平分外角∠DBC、∠ECB,∠P與∠A有何數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出答案_ .
(4)如圖4,在四邊形ABCD中,BP、CP分別平分外角∠EBC、∠FCB,∠P與∠A、∠D有何數(shù)量關(guān)系?為什么?(若需要利用上面的結(jié)論說(shuō)明,可直接使用,不需說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】依據(jù)下列解方程=的過(guò)程,請(qǐng)?jiān)诤竺胬ㄌ?hào)內(nèi)填寫(xiě)變形依據(jù).
解:=( )
3(3x+5)=2(2x﹣1).( )
9x+15=4x﹣2.( )
9x﹣4x=﹣15﹣2.( )
5x=﹣17.( )
x=﹣.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋裝牛奶的標(biāo)準(zhǔn)質(zhì)量為100克,現(xiàn)抽取5袋進(jìn)行檢測(cè),超過(guò)標(biāo)準(zhǔn)的質(zhì)量記為正數(shù),不足的記為負(fù)數(shù),結(jié)果如下表所示:(單位:克)
代號(hào) | ① | ② | ③ | ④ | ⑤ |
質(zhì)量 | -5 | +3 | +9 | -1 | -6 |
其中,質(zhì)量最標(biāo)準(zhǔn)的是_____號(hào)(填寫(xiě)序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數(shù).
小明的解題思路是:如圖2,過(guò)P作PE∥AB,通過(guò)平行線性質(zhì),可得∠APC=50°+60°=110°.
問(wèn)題遷移:
(1)如圖3,AD∥BC,點(diǎn)P在射線OM上運(yùn)動(dòng),當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠ADP=∠α,∠BCP=∠β.試判斷∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
(2)在(1)的條件下,如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你直接寫(xiě)出∠CPD、∠α、∠β間的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com