如圖,邊長為a的正方形ABCD繞點A逆時針旋轉(zhuǎn)30°得到正方形A′B′C′D′,圖中陰影部分的面積為


  1. A.
    數(shù)學(xué)公式a2
  2. B.
    數(shù)學(xué)公式a2
  3. C.
    (1-數(shù)學(xué)公式)a2
  4. D.
    (1-數(shù)學(xué)公式)a2
D
分析:設(shè)B′C′與CD交于點E.由于陰影部分的面積=S正方形ABCD-S四邊形AB′ED,又S正方形ABCD=a 2,所以關(guān)鍵是求S四邊形AB′ED.為此,連接AE.根據(jù)HL易證△AB′E≌△ADE,得出∠B′AE=∠DAE=30°.在直角△ADE中,由正切的定義得出DE=AD•tan∠DAE=a.再利用三角形的面積公式求出S四邊形AB′ED=2S△ADE
解答:解:設(shè)B′C′與CD交于點E,連接AE.
在△AB′E與△ADE中,∠AB′E=∠ADE=90°,
,
∴△AB′E≌△ADE(HL),
∴∠B′AE=∠DAE.
∵∠BAB′=30°,∠BAD=90°,
∴∠B′AE=∠DAE=30°,
∴DE=AD•tan∠DAE=a.
∴S四邊形AB′ED=2S△ADE=2××a×a=a2
∴陰影部分的面積=S正方形ABCD-S四邊形AB′ED=(1-)a 2
故選:D.
點評:本題主要考查了正方形、旋轉(zhuǎn)的性質(zhì),直角三角形的判定及性質(zhì),圖形的面積以及三角函數(shù)等知識,綜合性較強(qiáng),有一定難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,邊長為
π2
的正△ABC,點A與原點O重合,若將該正三角形沿數(shù)軸正方向翻滾一周,點A恰好與數(shù)軸上的點A′重合,則點A′對應(yīng)的實數(shù)是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,邊長為6的正方OABC的頂點O在坐標(biāo)原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AC交于點P.
(1)當(dāng)點E坐標(biāo)為(3,0)時,證明CE=EP;
(2)如果將上述條件“點E坐標(biāo)為(3,0)”改為“點E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,邊長為6的正方OABC的頂點O在坐標(biāo)原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AC交于點P.
(1)當(dāng)點E坐標(biāo)為(3,0)時,證明CE=EP;
(2)如果將上述條件“點E坐標(biāo)為(3,0)”改為“點E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖將邊長為1的正方形OAPB沿軸正方向連續(xù)翻轉(zhuǎn)2006次,點P依次落在點,,,,……的位置,則的橫坐標(biāo)=_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年新人教版九年級(上)期中數(shù)學(xué)試卷(7)(解析版) 題型:解答題

如圖,邊長為6的正方OABC的頂點O在坐標(biāo)原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AC交于點P.
(1)當(dāng)點E坐標(biāo)為(3,0)時,證明CE=EP;
(2)如果將上述條件“點E坐標(biāo)為(3,0)”改為“點E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案