x1,x2(x1x2)是方程(xa)(xb)=1(ab)的兩個(gè)根,則實(shí)數(shù)x1,x2,ab的大小關(guān)系為

[  ]
A.

x1x2ab

B.

x1ax2b

C.

x1abx2

D.

ax1bx2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

有一個(gè)定理:若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c為系數(shù)且為常數(shù))的兩個(gè)根,則x1+x2=-
b
a
、x1•x2=
c
a
,這個(gè)定理叫做韋達(dá)定理.如:x1、x2是方程x2+2x-1=0的兩個(gè)根,則x1+x2=-2、x1•x2=-1.
若x1、x2是方程x2+mx-2m=0的兩個(gè)根.(其中m≠0)試求:
(1)x1+x2與x1•x2的值(用含有m的代數(shù)式表示).
(2)x12+x22的值(用含有m的代數(shù)式表示).[提示:x12+x22=(x1+x22-2x1x2]
(3)若
x1
x2
+
x2
x1
=1
,試求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若x1,x2是一元二次方程ax2+bx+c=0(a≠0,a,b,c為系數(shù)且為常數(shù))的兩個(gè)根,則x1+x2=-
b
a
,x1•x2=
c
a
.這個(gè)定理叫做韋達(dá)定理.
如:x1,x2是方程x2+2x-1=0的兩個(gè)根,則x1+x2=-2、x1•x2=-1
已知:M、N是方程x2-x-1=0的兩根,
記S1=M+N;S2=M2+N2,…Sn=Mm+Nn
(1)S1=_____,S2=______,S3=_______,S4=_______,(直接寫(xiě)出答案)
(2)當(dāng)n為不小于3的整數(shù)時(shí),有(1)猜想Sn、Sn-1、Sn-2之間有何關(guān)系?
(3)利用(2)猜想[
1+
5
2
]8+[
1-
5
2
]8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

有一個(gè)定理:若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c為系數(shù)且為常數(shù))的兩個(gè)實(shí)數(shù)根,則x1+x2=-
b
a
、x1•x2=
c
a
,這個(gè)定理叫做韋達(dá)定理. 如:x1、x2是方程x2+2x-1=0的兩個(gè)實(shí)數(shù)根,則x1+x2=-2、x1•x2=-1. 若x1,x2是方程2x2+(m-1)x-
1
2
m=0
的兩個(gè)實(shí)根.試求:
(1)x1+x2與x1•x2的值(用含有m的代數(shù)式表示);
(2)
x
2
1
+
x
2
2
的值(用含有m的代數(shù)式表示);
(3)若(x1-x2)2=1,試求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

有一個(gè)定理:若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c 為系數(shù)且為常數(shù))的兩個(gè)根,則x1+x2=-
b
a
、x1•x2=
c
a
,這個(gè)定理叫做韋達(dá)定理.如:x1、x2是方程x2+2x-1=0的兩個(gè)根,則x1+x2=-2、x1•x2=-1.
若x1、x2是方程2x2+mx-2m+1=0的兩個(gè)根.試求:
(1)x1+x2與x1•x2的值(用含有m的代數(shù)式表示).
(2)x12+x22的值(用含有m的代數(shù)式表示).
(3)若(x1-x22=2,試求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c 為系數(shù)且為常數(shù))的兩個(gè)根,則x1+x2=-
b
a
、x1•x2=
c
a
,這個(gè)定理叫做韋達(dá)定理.如:x1、x2是方程x2+2x-1=0的兩個(gè)根,則x1+x2=-2、x1•x2=-1.
若x1、x2是一元兩次方程2x2+mx-2m+1=0的兩個(gè)實(shí)數(shù)根.試求:
(1)x1+x2與x1•x2的值(用含有m的代數(shù)式表示).
(2)若x12+x22=4,試求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案