【題目】國家支持大學(xué)生創(chuàng)新辦實(shí)業(yè),提供小額無息貸款,學(xué)生王亮享受國家政策貸款36000元用于代理某品牌服裝銷售,已知該店代理的品牌服裝的進(jìn)價(jià)為每件40元,該品牌服裝售量y(件)與銷售價(jià)x(元/件)之間的關(guān)系可用圖中的一條線段(實(shí)線)來表示.
(1)求日銷售量y與銷售價(jià)x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)該品牌服裝售價(jià)x為多少元時(shí),每天的銷售利潤W最大,且最大銷售利潤W為多少?
(3)若該店應(yīng)支付員工的工資為每人每天82元,每天還應(yīng)支付其它費(fèi)用為106元(不包含貸款).現(xiàn)該店只有2名員工,則該店至少需要多少天才能還清所有貸款?
【答案】(1)y=﹣2x+140 (40≤x≤58);(2)品牌服裝售價(jià)x為55元時(shí),每天的銷售利潤W最大,且最大銷售利潤W為450元;(3)至少需要200天才能還清所有貸款.
【解析】
(1)利用待定系數(shù)法求解可得;
(2)設(shè)最大利潤為W,總利潤=單件利潤×銷售量列出函數(shù)解析式,由(1)列出方程即可
(3)根據(jù)利潤最大值×天數(shù)≥每天的總支出×天數(shù)+貸款錢數(shù),解不等式可得答案.
解:
(1)由圖象可得,設(shè)日銷售量y與銷售價(jià)x之間的函數(shù)關(guān)系式為:y=kx+b,則有
,解得
故日銷售量y與銷售價(jià)x之間的函數(shù)關(guān)系式為:y=﹣2x+140 (40≤x≤58)
(2)依題意,設(shè)最大利潤為W,則有
W=(x﹣4)y=(x﹣4)(﹣2x+140)=﹣2x2+220x﹣5600
整理得W=﹣2(x﹣55)2+450
∵拋物線開口向下
∴當(dāng)x=55時(shí),獲得最大利潤
故品牌服裝售價(jià)x為55元時(shí),每天的銷售利潤W最大,且最大銷售利潤W為450元
(3)由題意,設(shè)至少需要m天才能還清所有貸款
由有450m﹣(82m×2+106m)≥36000
解得m≥200
故至少需要200天才能還清所有貸款
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ADE繞正方形ABCD的頂點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得△ABF,連接EF交AB于H,有如下五個(gè)結(jié)論①AE⊥AF;②EF:AF=:1;③AF2=FHFE;④∠AFE=∠DAE+∠CFE ⑤ FB:FC=HB:EC.則正確的結(jié)論有( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一個(gè)扇形紙片的圓心角為90°,半徑為6.如圖2,將這張扇形紙片折疊,使點(diǎn)A與點(diǎn)O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為_____.(答案用根號(hào)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ADE中,∠BAC=∠DAE=90°,點(diǎn)P為射線BD,CE的交點(diǎn).
(1)問題提出:如圖1,若AD=AE,AB=AC.
①∠ABD與∠ACE的數(shù)量關(guān)系為 ;②∠BPC的度數(shù)為 .
(2)猜想論證:如圖2,若∠ADE=∠ABC=30°,則(1)中的結(jié)論是否成立?請說明理由.
(3)拓展延伸:在(1)的條件中,若AB=2,AD=1,若把△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)∠EAC=90°時(shí),直接寫出PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AB=1,AD=2,動(dòng)點(diǎn)M、N分別從頂點(diǎn)A、B同時(shí)出發(fā),且分別沿著AD、BA運(yùn)動(dòng),點(diǎn)N的速度是點(diǎn)M的2倍,點(diǎn)N到達(dá)頂點(diǎn)A時(shí),則兩點(diǎn)同時(shí)停止運(yùn)動(dòng),連接BM、CN交于點(diǎn)P,過點(diǎn)P分別作AB、AD的垂線,垂足分別為E、F,則線段EF的最小值為( 。
A.B.﹣1C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明袋子中裝有三只大小、質(zhì)地都相同的小球,球面上分別標(biāo)有數(shù)字1、﹣2、3,攪勻后先從中任意摸出一個(gè)小球(不放回),記下數(shù)字作為點(diǎn)A的橫坐標(biāo),再從余下的兩個(gè)小球中任意摸出一個(gè)小球,記下數(shù)字作為點(diǎn)A的縱坐標(biāo).
(1)用畫樹狀圖或列表等方法列出所有可能出現(xiàn)的結(jié)果;
(2)求點(diǎn)A落在第四象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)C,D在反比例函數(shù)y=(k>0)的圖象上,AC∥BD∥y軸,已知點(diǎn)A,B的橫坐標(biāo)分別為1,2,△OAC與△ABD的面積之和為,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形中,對(duì)角線、交于點(diǎn)、是上一點(diǎn),連接,點(diǎn)在邊上,且交于點(diǎn),連接,已知,.
(1)若,,求的長;
(2)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如右圖,O為圓錐的頂點(diǎn),M為底面圓周上一點(diǎn),點(diǎn)P在OM上,一只螞蟻從點(diǎn)P出發(fā)繞圓錐側(cè)面爬行回到點(diǎn)P時(shí)所經(jīng)過的最短路徑的痕跡如圖.若沿OM將圓錐側(cè)面剪開并展平,所得側(cè)面展開圖是( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com