【題目】已知拋物線y=x2+bx+c經(jīng)過A(﹣1,0)、B(3,0)兩點.
(1)請求出拋物線的解析式;
(2)當0<x<4時,請直接寫出y的取值范圍.
【答案】(1)y=x2﹣2x﹣3;(2)y 的取值范圍為﹣4≤y<5.
【解析】
(1)利用待定系數(shù)法,將點A,B的坐標代入解析式即可求得;(2)根據(jù)拋物線的解析式可求出對稱軸及頂點坐標,根據(jù)函數(shù)的增減性即可確定0<x <4 時y的取值范圍.
(1)把A(﹣1,0)、B(3,0)代入y=x+bx+c得: ,
解得:
∴拋物線解析式為:y=x2﹣2x﹣3;
(2)y=(x﹣1)2﹣4,拋物線的對稱軸為直線 x=1,頂點坐標為(1,﹣4),
∴0<x<1時,y隨x的增大而減。1≤x<4時,y隨x的增大而增大,
當x=0時,y=(0-1)2-4=-3,
當 x=4 時,y=(4﹣1)2﹣4=5,
所以當 0<x<4 時,y 的取值范圍為﹣4≤y<5.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠A=90°,∠C=30°.將△ABC 繞點 B 順時針旋轉(zhuǎn) 60°得到△A'BC',其中點 A',C'分別是點 A,C 的對應(yīng)點.
(1)作出△A'BC'(要求尺規(guī)作圖,不寫作法,保留作圖痕跡);
(2)連接 AA',求∠C'A'A 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC與∠BAD的度數(shù)比為1:2,周長是48cm,求:
(1)兩條對角線的長度;
(2)菱形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 1,已知拋物線 L1:y=﹣x2+2x+3 與 x 軸交于 A,B 兩點(點 A在點 B 的左側(cè)),與 y 軸交于點 C,在 L1 上任取一點 P,過點 P 作直線 l⊥x 軸, 垂足為D,將 L1 沿直線 l 翻折得到拋物線L2,交 x 軸于點 M,N(點 M 在點 N 的左側(cè)).
(1)當 L1 與 L2 重合時,求點 P 的坐標;
(2)當點 P 與點 B 重合時,求此時 L2 的解析式;并直接寫出 L1 與 L2 中,y 均隨x 的增大而減小時的 x 的取值范圍;
(3)連接 PM,PB,設(shè)點 P(m,n),當 n=m 時,求△PMB 的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一張三角形紙片如圖甲,其中將紙片沿過點B的直線折疊,使點C落到AB邊上的E點處,折痕為如圖乙再將紙片沿過點E的直線折疊,點A恰好與點D重合,折痕為如圖丙原三角形紙片ABC中,的大小為______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),已知:在中,,,直線經(jīng)過點,直線,直線,垂足分別為點、.證明:.
(2)如圖(2),將(1)中的條件改為:在中,,、、三點都在直線上,并且有.請直接寫出線段、和之間的數(shù)量關(guān)系.
(3)拓展與應(yīng)用:如圖(3),、是、、三點所在直線上的兩動點、、三點互不重合),點為平分線上的一點,且和均為等邊三角形,連接、,若,試證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點,且AE∥CD.CE∥AB,連接DE交AC于F.
(1)證明:四邊形ADCE是菱形;
(2)試判斷BC與線段EF的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點E,將△BCE繞點C順時針旋轉(zhuǎn)到△DCF的位置,并延長BE交DF于點G.
(1)求證:△BDG∽△DEG;
(2)若EGBG=4,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2﹣2ax與x軸相交于O、A兩點,OA=4,點D為拋物線的頂點,并且直線y=kx+b與該拋物線相交于A、B兩點,與y軸相交于點C,B點的橫坐標是﹣1.
(1)求k,a,b的值;
(2)若P是直線AB上方拋物線上的一點,設(shè)P點的橫坐標是t,△PAB的面積是S,求S關(guān)于t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;
(3)在(2)的條件下,當PB∥CD時,點Q是直線AB上一點,若∠BPQ+∠CBO=180°,求Q點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com