【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)A′與點(diǎn)A是對(duì)應(yīng)點(diǎn),點(diǎn)B′與點(diǎn)B是對(duì)應(yīng)點(diǎn),連接AB′,且A、B′、A′在同一條直線上,則AA′的長(zhǎng)為( )
A. 6 B. 4 C. 3 D. 3
【答案】A
【解析】
由已知條件易得AB=2BC=4,∠BAC=30°,結(jié)合旋轉(zhuǎn)的性質(zhì)可得:∠A′B′C=∠ABC=60°,A′B′=AB=4,∠A′=∠BAC=30°,A′C=AC,由此可得∠A′AC=∠A′=30°,結(jié)合∠B′AC+∠B′CA=∠A′B′C=60°可得∠B′CA=30°=∠A′AC,由此可得AB′=B′C=BC=2,從而可得A′B=A′B′+AB′=4=2=6.
∵在Rt△ABC中,∠ACB=90°,∠B=60°,
∴∠BAC=30°,
∴AB=2BC=4,
∵△A′B′C是由△ABC繞點(diǎn)C旋轉(zhuǎn)得到的,
∴∠A′=∠BAC=30°,A′B′=AB=4,B′C=BC=2,∠A′B′C=∠B=60°,A′C=AC,
又∵A、B′、A′在同一條直線上,
∴∠A′AC=∠A′=30°,
又∵∠B′AC+∠B′CA=∠A′B′C=60°,
∴∠B′CA=30°=∠A′AC,
∴AB′=B′C=2,
∴A′B=A′B′+AB′=4=2=6.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=36°,AB=AC,CD、BE分別是∠ACB,∠ABC的平分線,CD、BE相交于F點(diǎn),連接DE,則圖中全等的三角形有多少組( 。
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】建立模型:
如圖1,已知△ABC,AC=BC,∠C=90°,頂點(diǎn)C在直線l上.
操作:
過點(diǎn)A作AD⊥l于點(diǎn)D,過點(diǎn)B作BE⊥l于點(diǎn)E.求證:△CAD≌△BCE.
模型應(yīng)用:
(1)如圖2,在直角坐標(biāo)系中,直線l1:y=x+4與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,將直線l1繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到l2.求l2的函數(shù)表達(dá)式.
(2)如圖3,在直角坐標(biāo)系中,點(diǎn)B(8,6),作BA⊥y軸于點(diǎn)A,作BC⊥x軸于點(diǎn)C,P是線段BC上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q(a,2a﹣6)位于第一象限內(nèi).問點(diǎn)A、P、Q能否構(gòu)成以點(diǎn)Q為直角頂點(diǎn)的等腰直角三角形,若能,請(qǐng)求出此時(shí)a的值,若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了選拔學(xué)生參加“漢字聽寫大賽”,對(duì)九年級(jí)一班、二班各10名學(xué)生進(jìn)行漢字聽寫測(cè)試,計(jì)分采用10分制(得分均取整數(shù)),成績(jī)達(dá)到6分或6分以上為及格,達(dá)到9分或10分為優(yōu)秀,成績(jī)?nèi)绫?所示,并制作了成績(jī)分析表(表2)
表1
一班 | 5 | 8 | 8 | 9 | 8 | 10 | 10 | 8 | 5 | 5 |
二班 | 10 | 6 | 6 | 9 | 10 | 4 | 5 | 7 | 10 | 8 |
表2
班級(jí) | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | 及格率 | 優(yōu)秀率 |
一班 | 7.6 | 8 | a | 3.82 | 70% | 30% |
二班 | b | c | 10 | 4.94 | 80% | 40% |
(1)求表2中,a,b,c;
(2)有人說二班的及格率、優(yōu)秀率均高于一班,所以二班成績(jī)比一班成績(jī)好;但也有人堅(jiān)定認(rèn)為一班成績(jī)比二班成績(jī)好.請(qǐng)你給出支持一班成績(jī)好的兩條理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】溫度的變化是人們?cè)谏钪薪?jīng)常談?wù)摰脑掝},請(qǐng)你根據(jù)下圖回答下列問題:
(1)上午9時(shí)的溫度是多少?這一天的最高溫度是多少?
(2)這一天的溫差是多少?從最低溫度到最高溫度經(jīng)過了多長(zhǎng)時(shí)間?
(3)在什么時(shí)間范圍內(nèi)溫度在下降?圖中的A點(diǎn)表示的是什么?
查看答案和解析>>
科目:
來源: 題型:【題目】某車間的甲、乙兩名工人分別同時(shí)生產(chǎn)同種零件,他們一天生產(chǎn)零件y(個(gè))與生產(chǎn)時(shí)間t(小時(shí))的關(guān)系如圖所示.
(1)根據(jù)圖象回答:
①甲、乙中,誰先完成一天的生產(chǎn)任務(wù);在生產(chǎn)過程中,誰因機(jī)器故障停止生產(chǎn)多少小時(shí);
②當(dāng)t等于多少時(shí),甲、乙所生產(chǎn)的零件個(gè)數(shù)相等;
(2)誰在哪一段時(shí)間內(nèi)的生產(chǎn)速度最快?求該段時(shí)間內(nèi),他每小時(shí)生產(chǎn)零件的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點(diǎn)D是邊BC上的點(diǎn)(與B,C兩點(diǎn)不重合),過點(diǎn)D作DE∥AC,DF∥AB,分別交AB,AC于E,F(xiàn)兩點(diǎn),下列說法正確的是( )
A. 若AD⊥BC,則四邊形AEDF是矩形
B. 若AD垂直平分BC,則四邊形AEDF是矩形
C. 若BD=CD,則四邊形AEDF是菱形
D. 若AD平分∠BAC,則四邊形AEDF是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是高,AE、BF是角平分線,它們相交于點(diǎn)O,∠CAB=500,∠C=600,求∠DAE和∠BOA的度數(shù)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com