分析 連接AD,因?yàn)椤鰽BC是等腰直角三角形,故∠ABD=45°,再由AB是圓的直徑得出∠ADB=90°,故△ABD也是等腰直角三角形,所以$\widehat{AD}$=$\widehat{BD}$,S陰影=S△ABC-S△ABD-S弓形AD由此可得出結(jié)論.
解答 解:連接AD,OD,
∵等腰直角△ABC中,
∴∠ABD=45°.
∵AB是圓的直徑,
∴∠ADB=90°,
∴△ABD也是等腰直角三角形,
∴$\widehat{AD}$=$\widehat{BD}$.
∵AB=8,
∴AD=BD=4$\sqrt{2}$,
∴S陰影=S△ABC-S△ABD-S弓形AD
=S△ABC-S△ABD-(S扇形AOD-$\frac{1}{2}$S△ABD)
=$\frac{1}{2}$×8×8-$\frac{1}{2}$×4$\sqrt{2}$×4$\sqrt{2}$-$\frac{90π×{4}^{2}}{360}$+$\frac{1}{2}$×$\frac{1}{2}$×4$\sqrt{2}$×4$\sqrt{2}$
=16-4π+8
=24-4π.
故答案為:24-4π.
點(diǎn)評(píng) 本題考查的是扇形面積的計(jì)算,根據(jù)題意作出輔助線,構(gòu)造出三角形及扇形是解答此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x5÷x=x4 | B. | (-2x3)2=-4x6 | C. | (x3)2=x5 | D. | x3•x3=2x6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com