【題目】如圖,在平面直角坐標(biāo)系中,A(1,1),B(1,1),C(1,﹣2),D(1,﹣2).把一條長為2019個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在點A處,并按ABCDA的規(guī)律繞在四邊形ABCD的邊上,則細線另一端所在位置的點的坐標(biāo)是_____

【答案】(1,0)

【解析】

根據(jù)點的坐標(biāo)求出四邊形ABCD的周長,然后求出另一端是繞第幾圈后的第幾個單位長度,從而確定答案.

A(11),B(﹣11),C(﹣1,﹣2),D(1,﹣2),

AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3

∴繞四邊形ABCD一周的細線長度為2+3+2+3=10,

2019÷10=201…9,

∴細線另一端在繞四邊形第202圈的第9個單位長度的位置,

即細線另一端所在位置的點的坐標(biāo)是(1,0).

故答案為:(10).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,直線EF分別與AB、CD交于點G,HGM⊥EF,HN⊥EF,交AB于點N,∠1=50°

1)求∠2的度數(shù);

2)試說明HN∥GM

3∠HNG=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形 ABCD 中,對角線 BD 的垂直平分線 MN AD 相交于點 M ,與 BD 相交于點 N ,連接 BM 、 DN .

1)求證: BN DM

2)若 AB 4 , AD 8,求 MD 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,∠C=90°,以點B為圓心,任意長為半徑畫弧,分別交AB、BC于點MN分別以點M、N為圓心,以大于MN的長度為半徑畫弧兩弧相交于點P過點P作線段BD,AC于點D,過點DDE⊥AB于點E,則下列結(jié)論①CD=ED②∠ABD=∠ABC;③BC=BE④AE=BE中,一定正確的是(

A. B. ① ② ④C. ①③④D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上A,B兩點對應(yīng)的數(shù)分別為-28P為數(shù)軸上一點,對應(yīng)的數(shù)為x

1)線段PA的長度可表示為_________(用含的式子表示);

2)在數(shù)軸上是否存在點P,使得PA-PB=6?若存在,求出x的值;若不存在,請說明理由;

3)當(dāng)P為線段AB的中點時,點A,BP同時開始在數(shù)軸上分別以每秒3個單位長度,每秒2個單位長度,每秒1個單位長度沿數(shù)軸正方向運動,試問經(jīng)過幾秒,PB=2PA?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ab,ABC是等邊三角形,點A在直線a上,邊BC在直線b上,把ABC沿BC方向平移BC的一半得到A′B′C′(如圖);繼續(xù)以上的平移得到圖,再繼續(xù)以上的平移得到圖,…;請問在第100個圖形中等邊三角形的個數(shù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BAD是由BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,且ABBC,BE=CE,連接DE.

(1)求證:BDE≌△BCE;

(2)試判斷四邊形ABED的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點A(4,5)分別作x軸、y軸的平行線,交直線y=﹣x+6B、C兩點,若函數(shù)y=(x0)的圖象△ABC的邊有公共點,則k的取值范圍是( 。

A. 5k20 B. 8k20 C. 5k8 D. 9k20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E、F為對角線BD上的兩點,且∠DAE=∠BCF.

(1)求證:AE=CF;

(2)求證:AE∥CF.

查看答案和解析>>

同步練習(xí)冊答案