【題目】如圖,點A(a,b)是拋物線上一動點,OBOA交拋物線于點B(c,d).當點A在拋物線上運動的過程中(點A不與坐標原點O重合),以下結論:①ac為定值;②ac=﹣bd;③△AOB的面積為定值;④直線AB必過一定點.正確的有(  )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】分析:過點A、B分別作x軸的垂線,通過構建相似三角形以及函數(shù)解析式來判斷①②是否正確.的面積不易直接求出,那么可由梯形的面積減去構建的兩個直角三角形的面積得出,根據(jù)得出的式子判斷這個面積是否為定值.利用待定系數(shù)法求出直線AB的解析式,即可判斷④是否正確.

詳解:過A.B分別作ACx軸于C.BDx軸于D,則:AC=b,OC=a,OD=c,BD=d

(1)由于OAOB,易知△OAC∽△BOD,有:

ac=bd(結論②正確).

(2)將點A.B的坐標代入拋物線的解析式中,有:

;

×,得: (結論①正確).

(3),

,

由此可看出,AOB的面積不為定值(結論③錯誤).

(4)設直線AB的解析式為:y=kx+h,代入A.B的坐標,得:

ak+h=bck+h=d

×c×a,得:

∴直線ABy軸的交點為(0,2)(結論④正確).

綜上,共有三個結論是正確的,它們是①②④,

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C90°RtBAP中,∠BAP90°,已知∠CBO=∠ABP,BPAC于點OEAC上一點,且AEOC.

(1)求證:APAO;

(2)求證:PEAO.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=AC,點E,F(xiàn)在邊BC上,BE=CF,點DAF的延長線上,AD=AC.

(1)求證:ABE≌△ACF;

(2)若∠BAE=30°,則∠ADC=   °.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是等邊三角形,ABD是等腰直角三角形,∠BAD90°,AEBD與點E,連CD分別交AEAB于點F、G,過點AAHCDBD于點H,則下列結論:①∠ADC15°;②AFAG;③ADF≌△BAH;④ DF2EH,其中正確結論的個數(shù)為(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某藥廠銷售部門根據(jù)市場調研結果,對該廠生產(chǎn)的一種新型原料藥未來兩年的銷售進行預測,井建立如下模型:設第t個月該原料藥的月銷售量為P(單位:噸),Pt之間存在如圖所示的函數(shù)關系,其圖象是函數(shù)P=(0<t≤8)的圖象與線段AB的組合;設第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Qt之間滿足如下關系:Q=

(1)當8<t≤24時,求P關于t的函數(shù)解析式;

(2)設第t個月銷售該原料藥的月毛利潤為w(單位:萬元)

①求w關于t的函數(shù)解析式;

②該藥廠銷售部門分析認為,336≤w≤513是最有利于該原料藥可持續(xù)生產(chǎn)和銷售的月毛利潤范圍,求此范圍所對應的月銷售量P的最小值和最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】農(nóng)貿市場擬建兩間長方形儲藏室,儲藏室的一面靠墻(墻長30m),中間用一面墻隔開,如圖所示,已知建筑材料可建墻的長度為42m,則這兩間長方形儲藏室的總占地面積的最大值為_______m2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上表示的是下列哪個不等式組的解集( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩塊完全相同的含30°的直角三角板疊放在一起,且∠DAB30°,有以下四個結論,①AFBC;②∠BOE135°;③OBC中點;④AGDE13,其中正確結論的序號是( 。

A.①②B.②④C.②③D.①③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一塊直角三角形的紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD等于(   .

A. 2 cm B. 4 cm C. 3 cm D. 5 cm

查看答案和解析>>

同步練習冊答案