分析 連接PC.由等腰直角三角形的性質(zhì)可知∠ACB=45°,由軸對(duì)稱的性質(zhì)可知∠PCA=∠DCA=45°,PC=DC=3,從而得到△BCP為直角三角形,最后依據(jù)勾股定理求解即可.
解答 解:如圖所示:連接PC.
∵∠B=90°,AB=BC=4,
∴∠ACB=45°.
∵BC=4,BD=1,
∴DC=3.
∵點(diǎn)D與點(diǎn)P關(guān)于對(duì)稱,
∴∠PCA=∠DCA=45°,PC=DC=3.
∴∠BCP=90°.
在Rt△BCP中,由勾股定理得:BP=$\sqrt{C{B}^{2}+P{C}^{2}}$=$\sqrt{{4}^{2}+{3}^{2}}$=5.
故答案為:5.
點(diǎn)評(píng) 本題主要考查的是軸對(duì)稱圖形的性質(zhì)、勾股定理的應(yīng)用、等腰直角三角形的性質(zhì),證得三角形BCP為直角三角形是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com