【題目】如圖,在△ABC中,CA=CB,∠C=90°,點D是BC的中點,將△ABC沿著直線EF折疊,使點A與點D重合,折痕交AB于點E,交AC于點F,那么sin∠BED的值為( 。
A. B. C. D.
【答案】B
【解析】
先根據翻折變換的性質得到△DEF≌△AEF,再根據等腰三角形的性質及三角形外角的性質可得到∠BED=∠CDF,設CD=a,CF=x,則CA=CB=2a,再根據勾股定理即可求解.
∵△DEF是△AEF翻折而成,
∴△DEF≌△AEF,∠A=∠EDF,
∵△ABC是等腰直角三角形,
∴∠EDF=45°,由三角形外角性質得∠CDF+45°=∠BED+45°,
∴∠BED=∠CDF,
設CD=a,CF=x,則CA=CB=2a,
∴DF=FA=2a﹣x,
∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+a2=(2a﹣x)2,
解得x=a,
∴DF=2a﹣x=a
∴sin∠BED=sin∠CDF=,
故選B.
科目:初中數學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,∠ABC的平分線BF交AD于點F,交BC于點D.
(1)求證:BE=EF;
(2)若DE=4,DF=3,求AF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校為了增強學生體質,決定開設以下體育課外活動項目:A:籃球 B:乒乓球C:羽毛球 D:足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次被調查的學生共有 人;
(2)請你將條形統(tǒng)計圖(2)補充完整;
(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3與x軸交于A(1,0)、B(﹣3,0)兩點,與y軸交于點C,設拋物線的頂點為D.
(1)求該拋物線的解析式與頂點D的坐標.
(2)試判斷△BCD的形狀,并說明理由.
(3)若點E在x軸上,點Q在拋物線上.是否存在以B、C、E、Q為頂點且以BC為一邊的平行四邊形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.
(4)探究坐標軸上是否存在點P,使得以P、A、C為頂點的三角形與△BCD相似?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】九(1)班開展了“讀一本好書”的活動,班委會對學生閱讀書籍的情況進行了問卷調查,問卷設置了“小說”“戲劇”“散文”“其他”四個類別,每位同學僅選一項.根據調査結果繪制了不完整的頻數分布表和扇形統(tǒng)計圖.
類別 | 頻數(人數) | 頻率 |
小說 | a | 0.5 |
戲劇 | 4 | |
散文 | 10 | 0.25 |
其他 | 6 | |
合計 | b | 1 |
根據圖表提供的信息,回答下列問題:
(1)直接寫出:a= .b= m= ;
(2)在調查問卷中,甲、乙、丙、丁四位同學選擇了“戲劇”類,現(xiàn)從中任意選出2名同學參加學校的戲劇社團,請求選取的2人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩名同學從《中國好聲音》、《歌手》、《蒙面唱將猜猜猜》三個綜藝節(jié)目中都隨機選擇一個節(jié)目觀看.
(1)甲同學觀看《蒙面唱將猜猜猜》的概率是 ;
(2)求甲、乙兩名同學觀看同一節(jié)目的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有一張矩形紙片,長10cm,寬6cm,在它的四角各減去一個同樣的小正方形,然后折疊成一個無蓋的長方體紙盒.若紙盒的底面(圖中陰影部分)面積是32cm2,求剪去的小正方形的邊長.設剪去的小正方形邊長是xcm,根據題意可列方程為( 。
A. 10×6﹣4×6x=32 B. (10﹣2x)(6﹣2x)=32
C. (10﹣x)(6﹣x)=32 D. 10×6﹣4x2=32
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線與軸交于點,與軸交于點,拋物線經過點,.
(1)求點B的坐標和拋物線的解析式;
(2)M(m,0)為x軸上一個動點,過點M垂直于x軸的直線與直線AB和拋物線分別交于點P、N,
①點在線段上運動,若以,,為頂點的三角形與相似,求點的坐標;
②點在軸上自由運動,若三個點,,中恰有一點是其它兩點所連線段的中點(三點重合除外),則稱,,三點為“共諧點”.請直接寫出使得,,三點成為“共諧點”的的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,若二次函數y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則①二次函數的最大值為a+b+c②9a+3b+c>0:③b2<4ac④c=﹣3a⑤當y<0時,﹣1<x<3,其中正確的個數是_____(填序號).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com