精英家教網 > 初中數學 > 題目詳情
某廠成功研制出一種市場需求量較大的高科技產品,已知生產每件產品的成本為60元,在銷售過程中發(fā)現:當銷售單價為100元時,年銷售量為20萬件;銷售單價每增加10元,年銷售量將減少1萬件.設銷售單價為x元,年銷售量為y萬件,年利潤為z萬元.
(1)寫出y與x之間的函數關系式;
(2)寫出z與x之間的函數關系式;
(3)銷售單價為多少時,年利潤最大?最大年利潤是多少?
考點:二次函數的應用
專題:銷售問題
分析:(1)由銷售單價為x元,可得銷售單價增加量,年銷售量減少量,實際銷售量,即可得出y與x之間的函數關系式,
(2)當銷售單價為x元時,每件銷售利潤為(x-60)元,銷售量為-
x
10
+30萬件,可得z與x之間的函數關系式;
(3)由z與x之間的函數關系式;即可求出年利潤最大值.
解答:解:(1)∵當銷售單價為x元(x>100)時,銷售單價增加了(x-100)元,年銷售量減少了
x-100
10
萬件,實際銷售量為(20-
x-100
10
)萬件,
∴y=20-
x-100
10
=-
x
10
+30
即y=-
x
10
+30,
(2)∵當銷售單價為x元時,每件銷售利潤為(x-60)元,銷售量為-
x
10
+30萬件,
∴z=(x-60)(-
x
10
+30),即z=-
x2
10
+36x-1800
(3)z=-
x2
10
+36x-1800=-
1
10
(x-180)2+1440,
當x=180時,年利潤z有最大值,最大年利潤是1440萬元.
點評:本題主要考查了二次函數解決利潤問題,解題的關鍵是確定出二次函數的解析式.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

喜歡吃拉面嗎?拉面館的師傅,用一根很粗的面條,把兩頭捏合在一起拉伸,再捏合,再拉伸,反復幾次,就把這根很粗的面條拉成了許多細的面條(假設在拉的過程中面條沒有斷),請問,這樣捏合,到第
 
次后可拉出128根面條,捏合了10次后可拉出
 
根細面條,捏合了
 
次后可以拉出22n根細面條.

查看答案和解析>>

科目:初中數學 來源: 題型:

先化簡,再求值:(mn-m2)÷
m2-2mn+n2
mn
m2-n2
m2
,其中m=
1
2
,n=-
2
3

查看答案和解析>>

科目:初中數學 來源: 題型:

已知,如圖,△ABC中,∠BAC=90°,AB=AC,BD是AC邊上的中線,AH⊥BD于H,與BC交于點E,FC⊥AC交AE的延長線于F.
(1)求證:BD=AF.
(2)連接DF,求證:EC垂直平分DF.

查看答案和解析>>

科目:初中數學 來源: 題型:

化簡再求值:(
5a2-2b2
a+b
-a+b)÷
2a-4b
a+b
,其中a,b滿足|a+1|+
b-3
=0.

查看答案和解析>>

科目:初中數學 來源: 題型:

若AB∥CD,∠AEH=130°,那么∠EHC等于多少度(  )
A、60°B、70°
C、65°D、50°

查看答案和解析>>

科目:初中數學 來源: 題型:

如下表:
3abc-12
從左到右每小格中都填入一個整數,使得其中任意三個相鄰格子中所填整數之和都相等,則第2014個格子中的數為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,若干個正三角形的一邊在同一條直線a上,這邊對的頂點也在同一條直線b上,它們的面積依次為S1,S2,S3,S4…若S1=1,S2=2,則S6等于( 。
A、16B、24
C、32D、不能確定

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,拋物線y=ax2+bx-3a經過A(-1,0)、C(0,3)兩點,與x軸交于另一點B.
(1)求此拋物線的解析式;
(2)已知點D(m,m+1)在第一象限的拋物線上,求點D關于直線BC對稱的點D′的坐標;
(3)在(2)的條件下,連接BD,問在拋物線上是否存在點P,使∠DBP=45°?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案