拋物線的圖象如圖所示,根據(jù)圖象可知,拋物線的解析式可能是( 。
A.y=x2-x-2B.y=-
1
2
x2-
1
2
x+2
C.y=-
1
2
x2-
1
2
x+1
D.y=-x2+x+2

A、由圖象可知開口向下,故a<0,此選項錯誤;
B、拋物線過點(-1,0),(2,0),根據(jù)拋物線的對稱性,頂點的橫坐標(biāo)是
1
2
,
而y=-
1
2
x2-
1
2
x+2的頂點橫坐標(biāo)是-
-
1
2
2×(-
1
2
)
=-
1
2
,故此選項錯誤;
C、y=-
1
2
x2-
1
2
x+1的頂點橫坐標(biāo)是-
1
2
,故此選項錯誤;
D、y=-x2+x+2的頂點橫坐標(biāo)是
1
2
,并且拋物線過點(-1,0),(2,0),故此選項正確.
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c與y軸交于點C,與x軸交于點A(x1,0)、B(x2,0)(x1<x2),頂點M的縱坐標(biāo)為-3,若x1,x2是關(guān)于方程x2+(m+1)x+m2-12=0(其中m<0)的兩個根,且x12+x22=10.
(1)求A、B兩點的坐標(biāo);
(2)求拋物線的解析式及點C的坐標(biāo);
(3)在拋物線上是否存在點P,使△PAB的面積等于四邊形ACBM的面積的2倍?若存在,求出所有符合條件點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c與x軸交于A(1,0),B(3,0)兩點,且過點(-1,16),拋物線的頂點是點C,對稱軸與x軸的交點為點D,原點為點O.在y軸的正半軸上有一動點N,使以A、O、N這三點為頂點的三角形與以C、A、D這三點為頂點的三角形相似.求:
(1)這條拋物線的解析式;
(2)點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y=ax2+bx+3經(jīng)過點A、B、C,已知A(-1,0),B(3,0).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點,過點P作y軸平行線,交拋物線于點D,當(dāng)△BDC的面積最大時,求點P的坐標(biāo);
(3)如圖2,在(2)的條件下,延長DP交x軸于點F,M(m,0)是x軸上一動點,N是線段DF上一點,當(dāng)△BDC的面積最大時,若∠MNC=90°,請直接寫出實數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+3的圖象經(jīng)過(1,
21
4
),(2,
11
2
)兩點,與x軸的兩個交點的右邊一個交點為點A,與y軸交于點B.
(1)求此二次函數(shù)的解析式并畫出這個二次函數(shù)的圖象;
(2)求線段AB的中垂線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+b經(jīng)過點A(4,4)和點B(0,-4).C是x軸上的一個動點.
(1)求拋物線的解析式;
(2)若點C在以AB為直徑的圓上,求點C的坐標(biāo);
(3)將點A繞C點逆時針旋轉(zhuǎn)90°得到點D,當(dāng)點D在拋物線上時,求出所有滿足條件的點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)h=3.5t-4.9t2(t的單位:s,h的單位:m)可以描述小敏跳遠(yuǎn)時重心高度的變化,則他起跳后到重心最高時所用的時間約是( 。
A.0.36sB.0.63sC.0.70sD.0.71s

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,一座拋物線型拱橋,橋下水面寬度是4m,拱高是2m,當(dāng)水面下降1m后,水面寬度是多少?(
6
=2.45,結(jié)果保留0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某校課外活動小組準(zhǔn)備利用學(xué)校的一面墻,用長為30米的籬笆圍成一個矩形生物苗圃園.
(1)若墻長為18米(如圖所示),當(dāng)垂直于墻的一邊的長為多少米時,這個苗圃園的面積等于88平方米?
(2)當(dāng)垂直于墻的一邊的長為多少米時,這個苗圃園的面積最大,并求出這個最大值.

查看答案和解析>>

同步練習(xí)冊答案