【題目】如圖所示,△ABC中,AD是的角平分線且AD把△ABC分成面積為3:7的兩部分(AC<AB),AC=5,則AB=_____.
【答案】.
【解析】
過點D作DE⊥AB,DF⊥AC,垂足分別為E、F,根據(jù)角平分線上的點到角的兩邊的距離相等可得DE=DF,再根據(jù)角平分線AD將△ABC分成面積比為3:7的兩部分,且AC<AB,得出S△ABD:S△ACD=(ABDE):(ACDF)=AB:AC=7:3,然后由AC=5即可求得AB的值.
解:如圖,過點D作DE⊥AB,DF⊥AC,垂足分別為E、F,
∵AD是△ABC的角平分線,
∴DE=DF,
∴S△ABD:S△ACD=(ABDE):(ACDF),
∵AC<AB,
∴S△ABD:S△ACD=(ABDE):(ACDF)=AB:AC=7:3.
∵AC=5,
∴AB=.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)觀察推理:如圖1,△ABC中,∠ACB=90°,AC=BC,直線l過點C,點A、B在直線l同側(cè),BD⊥l,AE⊥l,垂足分別為D、E.求證:△AEC≌△CDB;
(2)類比探究:如圖2,Rt△ABC中,∠ACB=90°,AC=6,將斜邊AB繞點A逆時針旋轉(zhuǎn)90°至AB′,連接B′C,求△AB′C的面積.
(3)拓展提升:如圖3,等邊△EBC中,EC=BC=4cm,點O在BC上,且OC=3cm,動點P從點E沿射線EC以2cm/s速度運動,連結(jié)OP,將線段OP繞點O逆時針旋轉(zhuǎn)120°得到線段OF.要使點F恰好落在射線EB上,求點P運動的時間ts.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(m-4,m+1)在x軸上,將點A右移8個單位,上移4個單位得到點B.
(1)則m= ;B點坐標( );
(2)連接AB交y軸于點C,則= ;
(3)點D是x軸上一點,△ABD的面積為12,求D點坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】電視節(jié)目“奔跑吧兄弟”播出后深受中學(xué)生喜愛,小睿想知道大家最喜歡哪位“兄弟”,于是在本校隨機抽取部分學(xué)生進行抽查每人只能選一個自己最喜歡的“兄弟”,得到如圖所示的統(tǒng)計圖,
請結(jié)合圖中提供的信息解答下列問題:
若小睿所在學(xué)校有1800名學(xué)生,估計全校喜歡“鹿晗”兄弟的學(xué)生人數(shù).
小睿和小軒都喜歡“陳赫”,小彤喜歡“鹿晗”,從他們?nèi)酥须S機抽選兩人參加“撕名牌”游戲,求選中的兩人中“一人喜歡陳赫,一人喜歡鹿晗”的概率要求列表或畫樹狀圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某中學(xué)有一塊四邊形的空地ABCD,學(xué)校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問學(xué)校需要投入多少資金買草皮?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形與直角三角形的斜邊在同一直線上,,,平分,將繞點按逆時針方向旋轉(zhuǎn),記為,在旋轉(zhuǎn)過程中:
(1)如圖,當(dāng)______時,,當(dāng)______時,;
(2)如圖,當(dāng)頂點在內(nèi)部時,邊、分別交、的延長線于點、,記,.
①與度數(shù)的和是否變化?若不變,求出與度數(shù)和;若變化,請說明理由;
②若使得,求出、的度數(shù),并直接寫出此時的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 擲一枚均勻的骰子,骰子停止轉(zhuǎn)動后,6點朝上是必然事件
B. 甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定
C. “明天降雨的概率為”,表示明天有半天都在降雨
D. 了解一批電視機的使用壽命,適合用普查的方式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次質(zhì)檢抽測中,隨機抽取某攤位20袋食鹽,測得各袋的質(zhì)量分別為(單位:g):492,496,494,495,498,497,501,502,504,496,497,503,506,508,507,492,496,500,501,499,根據(jù)以上抽測結(jié)果,任買一袋該攤位的食鹽,質(zhì)量在497.5 g~501.5 g之間的概率為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,以點O為圓心的經(jīng)過AB的中點C,連接OC,直線AO與相交于點E,D,OB交于點F,P是的中點,連接CE,CF,BP.
求證:AB是的切線;
若,則
當(dāng)______時,四邊形OECF是菱形;
當(dāng)______時,四邊形OCBP是正方形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com