精英家教網(wǎng)如圖,CD⊥AB于D點,BE⊥AC于E點,BE,CD交于O點,且AO平分∠BAC.
求證:OB=OC.
分析:已知BE⊥AC,CD⊥AB可推出∠ADC=∠BDC=∠AEB=∠CEB=90°,由AO平分∠BAC可知∠1=∠2,然后根據(jù)AAS證得△AOD≌△AOE,△BOD≌△COE,即可證得OB=OC.
解答:證明:∵BE⊥AC,CD⊥AB,
∴∠ADC=∠BDC=∠AEB=∠CEB=90°.
∵AO平分∠BAC,
∴∠1=∠2.
在△AOD和△AOE中,
∠ADC=∠AEB
∠1=∠2
OA=OA
,
∴△AOD≌△AOE(AAS).
∴OD=OE.
在△BOD和△COE中,
∠BDC=∠CEB
OD=OE
∠BOD=∠COE
,
∴△BOD≌△COE(ASA).
∴OB=OC.
點評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形).
利用全等提供的條件證明全等是常用的方法,注意掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、已知如圖,CD⊥AB于D,EF⊥AB于F,∠1=∠2,請問DG∥BC嗎?如果平行,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、已知:如圖,CD⊥AB于D,點E為BC邊上的任意一點,EF⊥AB于F,且∠1=∠2,那么BC與DG平行嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,CD⊥AB于E,若∠B=60°,則∠A=
30
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,CD⊥AB于D,DE∥BC,∠1=∠2,則FG與AB的位置關(guān)系是
垂直

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,CD⊥AB于D,點F是BC上任意一點,F(xiàn)E⊥AB于E,且∠3=∠BCA,那么∠1與∠2有什么關(guān)系?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案