(2005•玉林)如圖,AB與CD相交于E,AE=EB,CE=ED,D為線段FB的中點(diǎn),CF與AB交于點(diǎn)G,若CF=15cm,求GF之長.

【答案】分析:因?yàn)锳E=EB,CE=ED,∠AEC=∠BED,所以△AEC≌△BED,所以∠EAC=∠EDB,∠EAC=∠EBD,AC=BD,又D為線段FB的中點(diǎn),所以四邊形ACFD為平行四邊形,△AGC∽△BGF,=,,又因?yàn)镃F=15cm,解得GF=10(cm).
解答:解:∵AE=EB,CE=ED,∠AEC=∠BED,
∴△AEC≌△BED,
∴∠ACE=∠EDB,∠EAC=∠EBD,AC=BD,
又∵D為線段FB的中點(diǎn),
∴ACFD,
∴四邊形ACFD為平行四邊形,
∴△AGC∽△BGF,
=
,
又∵CF=15cm,解得GF=10(cm),
∴GF=10(cm).
點(diǎn)評(píng):此題主要考查了全等三角形的判定和相似三角形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(03)(解析版) 題型:解答題

(2005•玉林)如圖,拋物線y=x2+bx+c與x軸的負(fù)半軸相交于A、B兩點(diǎn),與y軸的正半軸相交于C點(diǎn),與雙曲線y=的一個(gè)交點(diǎn)是(1,m),且OA=OC.求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2005•玉林)如圖,A、B兩點(diǎn)的坐標(biāo)分別是(x1,0)、(x2,0),其中x1、x2是關(guān)于x的方程x2+2x+m-3=0的兩根,且x1<0<x2
(1)求m的取值范圍;
(2)設(shè)點(diǎn)C在y軸的正半軸上,∠ACB=90°,∠CAB=30°,求m的值;
(3)在上述條件下,若點(diǎn)D在第二象限,△DAB≌△CBA,求出直線AD的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2005•玉林)如圖,拋物線y=x2+bx+c與x軸的負(fù)半軸相交于A、B兩點(diǎn),與y軸的正半軸相交于C點(diǎn),與雙曲線y=的一個(gè)交點(diǎn)是(1,m),且OA=OC.求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•玉林)如圖,A、B兩點(diǎn)的坐標(biāo)分別是(x1,0)、(x2,0),其中x1、x2是關(guān)于x的方程x2+2x+m-3=0的兩根,且x1<0<x2
(1)求m的取值范圍;
(2)設(shè)點(diǎn)C在y軸的正半軸上,∠ACB=90°,∠CAB=30°,求m的值;
(3)在上述條件下,若點(diǎn)D在第二象限,△DAB≌△CBA,求出直線AD的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年廣西玉林市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•玉林)如圖,A、B兩點(diǎn)的坐標(biāo)分別是(x1,0)、(x2,0),其中x1、x2是關(guān)于x的方程x2+2x+m-3=0的兩根,且x1<0<x2
(1)求m的取值范圍;
(2)設(shè)點(diǎn)C在y軸的正半軸上,∠ACB=90°,∠CAB=30°,求m的值;
(3)在上述條件下,若點(diǎn)D在第二象限,△DAB≌△CBA,求出直線AD的函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊答案