【題目】閱讀并解決問題:歸納
人們通過長期觀察發(fā)現(xiàn),如果早晨天空中有棉絮狀的高積云,那么午后常有雷雨降臨,于是有了“朝有破絮云,午后雷雨臨”的諺語.在數(shù)學(xué)里,我們也常用這樣的方法探求規(guī)律,例如:三角形有3個(gè)頂點(diǎn),如果在它的內(nèi)部再畫n個(gè)點(diǎn),并以(n+3)個(gè)點(diǎn)為頂點(diǎn),把三角形剪成若干個(gè)小三角形,那么最多可以剪得多少個(gè)這樣的三角形? .為了解決這個(gè)問題,我們可以從n=1、n=2、nr=3 等具體的、簡單的情形入手,探索最多可以剪得的三角形個(gè)數(shù)的變化規(guī)律.
(1)完成表格信息:_______、_________;
(2)通過觀察、比較,可以發(fā)現(xiàn):三角形內(nèi)的點(diǎn)每增加1個(gè),最多可以剪得的三角形增加_________個(gè).于是,我們可以猜想:當(dāng)三角形內(nèi)的點(diǎn)的個(gè)數(shù)為n時(shí),最多可以剪得____________個(gè)三角形.像這樣通過對現(xiàn)象的觀察、分析,從特殊到-般地探索這類現(xiàn)象的規(guī)律、提出猜想的思想方法稱為歸納.在日常生活中,人們互相交談時(shí),常常有人在列舉了一些現(xiàn)象后,說“這(即列舉的現(xiàn)象)說明....其實(shí)這就是運(yùn)用了歸納的方法.用歸納的方法得出的結(jié)論不一定正確,是否正確需要加以證實(shí).
(3)請你借助表格嘗試用歸納的方法探索: 1+3+5+7+......+(2n-1)的和是多少?并加以證實(shí).
【答案】(1)5,7;(2)2,2n+1;(3)S=n2,見解析
【解析】
(1)由圖形規(guī)律可得,答案為5,7;
(2)因?yàn)?/span>5-3=7-5=2,所以三角形內(nèi)的點(diǎn)每增加1個(gè),最多可以剪得的三角形增加2個(gè);∵三角形內(nèi)點(diǎn)的個(gè)數(shù)為1時(shí),最多剪出的小三角形個(gè)數(shù)3=2×1+1,因?yàn)槿切蝺?nèi)點(diǎn)的個(gè)數(shù)為2時(shí),最多剪出的小三角形個(gè)數(shù)5=2×2+1,三角形內(nèi)點(diǎn)的個(gè)數(shù)為3時(shí),7最多剪出的小三角形個(gè)數(shù)7=2×3+1,所以三角形內(nèi)點(diǎn)的個(gè)數(shù)為n時(shí),最多剪出的小三角形個(gè)數(shù)2n+1;
(3)用倒序相加法證明即可.
(1)把表格補(bǔ)充完整如下:
故答案為:5,7;
(2)∵5-3=7-5=2,
∴三角形內(nèi)的點(diǎn)每增加1個(gè),最多可以剪得的三角形增加2個(gè);
∵三角形內(nèi)點(diǎn)的個(gè)數(shù)為1時(shí),最多剪出的小三角形個(gè)數(shù)3=2×1+1,
三角形內(nèi)點(diǎn)的個(gè)數(shù)為2時(shí),最多剪出的小三角形個(gè)數(shù)5=2×2+1,
三角形內(nèi)點(diǎn)的個(gè)數(shù)為3時(shí),7最多剪出的小三角形個(gè)數(shù)7=2×3+1,
……
∴三角形內(nèi)點(diǎn)的個(gè)數(shù)為n時(shí),最多剪出的小三角形個(gè)數(shù)為2n+1.
故答案為2,(2n+1);
(3)
證明:∵S=1+3+5+7+…+(2n-5)+(2n-3)+(2n-1),
∴S=(2n-1)+(2n-3)+(2n-5)+…+7+5+3+1,
∴S+S=2nn=2n2,
2S=2n2
S=n2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩位同學(xué)參加數(shù)學(xué)綜合素質(zhì)測試,各項(xiàng)成績?nèi)缦卤恚海▎挝唬悍郑?/span>
數(shù)與代數(shù) | 空間與圖形 | 統(tǒng)計(jì)與概率 | 綜合與實(shí)踐 | |
學(xué)生甲 | 93 | 93 | 89 | 90 |
學(xué)生乙 | 94 | 92 | 94 | 86 |
(1)分別計(jì)算甲、乙同學(xué)成績的中位數(shù);
(2)如果數(shù)與代數(shù),空間與圖形,統(tǒng)計(jì)與概率,綜合與實(shí)踐的成績按4:3:1:2計(jì)算,那么甲、乙同學(xué)的數(shù)學(xué)綜合素質(zhì)成績分別為多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北京時(shí)間2019年4月10日21時(shí),人類拍攝的首張黑洞照片問世,黑洞是一種引力極大的天體,連光都逃脫不了它的束縛,數(shù)學(xué)中也存在著神奇的“黑洞數(shù)”現(xiàn)象:
(1)請你用不同的三個(gè)數(shù)再試試,你發(fā)現(xiàn)了什么“神奇”的現(xiàn)象?
(2)請用所學(xué)過的知識(shí)現(xiàn)象解釋一下(1)中的發(fā)現(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖與探究:
如圖,已知點(diǎn)A、O、B是正方形網(wǎng)格的格點(diǎn)(網(wǎng)格線的交點(diǎn)),點(diǎn)P是∠AOB的邊0B上的一點(diǎn).
(1)過點(diǎn)P畫OB的垂線,交OA于點(diǎn)E;
(2)過點(diǎn)P畫OA的垂線,垂足為H;
(3)過點(diǎn)P畫OA的平行線PC;
(4)若每個(gè)小正方形的邊長是1,則點(diǎn)P到OA的距離是_________;
(5)線段PE、PH、OE的大小關(guān)系是___________(用“<"連接).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)工程隊(duì)分別同時(shí)開挖兩段河渠,所挖河渠的長度y(m)與挖掘時(shí)間x(h)之間的關(guān)系如圖所示.根據(jù)圖象所提供的信息有:①甲隊(duì)挖掘30m時(shí),用了3h;②挖掘6h時(shí)甲隊(duì)比乙隊(duì)多挖了10m;③乙隊(duì)的挖掘速度總是小于甲隊(duì);④開挖后甲、乙兩隊(duì)所挖河渠長度相等時(shí),x=4.其中一定正確的有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展“唱紅歌”比賽活動(dòng),九年級(jí)(1)、(2)班根據(jù)初賽成績,各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽,成績?nèi)鐖D所示:
(1)根據(jù)圖示填寫下表;
班級(jí) | 平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) |
九(1) | 85 | ||
九(2) | 85 | 100 |
(2)結(jié)合兩班復(fù)賽成績的平均數(shù)和中位數(shù),分析哪個(gè)班級(jí)的復(fù)賽成績較好;
(3)已知九(1)班復(fù)賽成績的方差是70,請計(jì)算九(2)班的復(fù)賽成績的方差,并說明哪個(gè)班的成績比較穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的證明過程,指出其錯(cuò)誤.(在錯(cuò)誤部分下方劃線)已知△ABC,求證:∠A+∠B+∠C=180°
(1)證明:過A作DE∥BC,且使∠1=∠C
∵DE∥BC(作圖)
∴∠2=∠B(內(nèi)錯(cuò)角相等兩直線平行)
∵∠1=∠C(作圖)
∴∠B+∠C+∠3=∠2+∠1+∠3(等量代換)
∠2+∠l+∠3=180°(周角的定義)
即∠BAC+∠B+∠C=180°(等量代換)
(2)類比探究:請同學(xué)們參考圖2,模仿(1)的解決過程,避免(1)中的錯(cuò)誤,試說明求證:∠A+∠B+∠C=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的邊AC上任意一點(diǎn),△ABC經(jīng)過平移后得到△A1B1C1,點(diǎn)P的對應(yīng)點(diǎn)為P1(a+6,b-2).
(1)直接寫出點(diǎn)C1的坐標(biāo);
(2)在圖中畫出△A1B1C1;
(3)求△AOA1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=2x的圖象與反比例函數(shù)y=(x>0),y=(x>0)的圖象分別交于P,Q兩點(diǎn),點(diǎn)P為OQ的中點(diǎn),Rt△ABC的直角頂點(diǎn)A是雙曲線y=(x>0)上一動(dòng)點(diǎn),頂點(diǎn)B,C在雙曲線y=(x>0)上,且兩直角邊均與坐標(biāo)軸平行.
(1)直接寫出k的值;
(2)△ABC的面積是否變化?若不變,求出△ABC的面積;若變化,請說明理由;
(3)直線y=2x是否存在點(diǎn)D,使得以A,B,C,D為頂點(diǎn)的四邊形是平行四邊形,若存在,求出點(diǎn)A的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com