【題目】如圖,已知頂點(diǎn)為的拋物線與軸交于,兩點(diǎn),直線過頂點(diǎn)和點(diǎn).
(1)求的值;
(2)求函數(shù)的解析式;
(3)拋物線上是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)﹣3;(2)yx2﹣3;(3)M的坐標(biāo)為(3,6)或(,﹣2).
【解析】
(1)把C(0,﹣3)代入直線y=x+m中解答即可;
(2)把y=0代入直線解析式得出點(diǎn)B的坐標(biāo),再利用待定系數(shù)法確定函數(shù)關(guān)系式即可;
(3)分M在BC上方和下方兩種情況進(jìn)行解答即可.
(1)將C(0,﹣3)代入y=x+m,可得:
m=﹣3;
(2)將y=0代入y=x﹣3得:
x=3,
所以點(diǎn)B的坐標(biāo)為(3,0),
將(0,﹣3)、(3,0)代入y=ax2+b中,可得:
,
解得:,
所以二次函數(shù)的解析式為:yx2﹣3;
(3)存在,分以下兩種情況:
①若M在B上方,設(shè)MC交x軸于點(diǎn)D,
則∠ODC=45°+15°=60°,
∴OD=OCtan30°,
設(shè)DC為y=kx﹣3,代入(,0),可得:k,
聯(lián)立兩個(gè)方程可得:,
解得:,
所以M1(3,6);
②若M在B下方,設(shè)MC交x軸于點(diǎn)E,
則∠OEC=45°-15°=30°,
∴OE=OCtan60°=3,
設(shè)EC為y=kx﹣3,代入(3,0)可得:k,
聯(lián)立兩個(gè)方程可得:,
解得:,
所以M2(,﹣2).
綜上所述M的坐標(biāo)為(3,6)或(,﹣2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某圖書館計(jì)劃選購甲、乙兩種圖書.已知甲圖書每本價(jià)格是乙圖書每本價(jià)格的2.5倍,用800元單獨(dú)購買甲圖書比用800元單獨(dú)購買乙圖書要少24本.
(1)甲、乙兩種圖書每本價(jià)格分別為多少元?
(2)如果該圖書館計(jì)劃購買乙圖書的本數(shù)比購買甲圖書本數(shù)的2倍多8本,且用于購買甲、乙兩種圖書的總經(jīng)費(fèi)不超過1060元,那么該圖書館最多可以購買多少本乙圖書?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB,AC是⊙O的兩條切線,B,C為切點(diǎn),連接CO并延長交AB于點(diǎn)D,交⊙O于點(diǎn)E,連接BE,連接AO.
(1)求證:AO∥BE;
(2)若DE=2,tan∠BEO=,求DO的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)P是等邊三角形△ABC中一點(diǎn),線段AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°到AQ,連接PQ、QC.
(1)求證:PB=QC;
(2)若PA=3,PB=4,∠APB=150°,求PC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:一次函數(shù) 的圖象與坐標(biāo)軸交于A、B兩點(diǎn),點(diǎn)P是函數(shù)(0<x<4)圖象上任意一點(diǎn),過點(diǎn)P作PM⊥y軸于點(diǎn)M,連接OP.
(1)當(dāng)AP為何值時(shí),△OPM的面積最大?并求出最大值;
(2)當(dāng)△BOP為等腰三角形時(shí),試確定點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線L:y=x2+x-6與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),并與y軸相交于點(diǎn)C.
(1)求A、B、C三點(diǎn)的坐標(biāo),并求出△ABC的面積;
(2)將拋物線向左或向右平移,得到拋物線L,且L與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),并與y軸交于點(diǎn)C,要使△ABC和△ABC的面積相等,求所有滿足條件的拋物線的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,AB=AC,過AB上一點(diǎn)D作DE∥AC交BC于點(diǎn)E,以E為頂點(diǎn),ED為一邊,作∠DEF=∠A,另一邊EF交AC于點(diǎn)F.
(1)求證:四邊形ADEF為平行四邊形;
(2)當(dāng)點(diǎn)D為AB中點(diǎn)時(shí),判斷ADEF的形狀;
(3)延長圖①中的DE到點(diǎn)G,使EG=DE,連接AE,AG,F(xiàn)G,得到圖②,若AD=AG,判斷四邊形AEGF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y1=ax2+bx+c(a≠0)和一次函數(shù)y2=kx+n(k≠0)的圖象如圖所示,下面有四個(gè)推斷:
①二次函數(shù)y1有最大值;
②二次函數(shù)y1的圖象關(guān)于直線x=﹣1對(duì)稱
③當(dāng)x=﹣2時(shí),二次函數(shù)y1的值大于0
④過動(dòng)點(diǎn)P(m,0)且垂直于x軸的直線與y1,y2的圖象的交點(diǎn)分別為C,D,當(dāng)點(diǎn)C位于點(diǎn)D上方時(shí),m的取值范圍是m<﹣3或m>﹣1.
以上推斷正確的是( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的頂點(diǎn)坐標(biāo)分別為A(3,0),B(0,4),C(-3,0).動(dòng)點(diǎn)M,N同時(shí)從A點(diǎn)出發(fā),M沿A→C,N沿折線A→B→C,均以每秒1個(gè)單位長度的速度移動(dòng),當(dāng)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)C時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止移動(dòng),移動(dòng)時(shí)間記為t秒.連接MN.
(1)求直線BC的解析式;
(2)移動(dòng)過程中,將△AMN沿直線MN翻折,點(diǎn)A恰好落在BC邊上點(diǎn)D處,求此時(shí)t值及點(diǎn)D的坐標(biāo);
(3)當(dāng)點(diǎn)M,N移動(dòng)時(shí),記△ABC在直線MN右側(cè)部分的面積為S,求S關(guān)于時(shí)間t的函數(shù)關(guān)系式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com