【題目】如圖,拋物線y=ax2+4x+c過點A(6,0)B(3,),與y軸交于點C.聯(lián)結(jié)AB并延長,交y軸于點D

(1)求該拋物線的表達式;

(2)求△ADC的面積;

(3)P在線段AC上,如果△OAP和△DCA相似,求點P的坐標.

【答案】(1)y=-x2+4x-6(2)SADC=27;(3)P的坐標為(2-4)(,-)

【解析】

(1)A(60),B(3,)代入y=ax2+4x+c,即可求出a,c值,進一步寫出拋物線解析式;

(2)分別求拋物線,直線與坐標軸交點D,C的坐標,可直接求出△ADC的面積;

(3)先求出∠OAC=OCA=45°,再分類討論△OAP和△DCA相似的兩種情況,求出AP長度,可利用特殊角進一步求出相關(guān)線段的長度,即可寫出點P的坐標.

解:(1)A(6,0)B(3,)代入y=ax2+4x+c

得,,

解得,a=-,c=-6

∴該拋物線解析式為:y=-x2+4x-6;

(2)A(6,0),B(3,)代入y=kx+b

得,,

解得,k=-,b=3,

yAB=-x+3,

當(dāng)x=0時,y=3,

D(0,3),OD=3,

在拋物線y=-x2+4x-6中,

當(dāng)x=0時,y=-6

C(0,-6),OC=6

DC=OC+OD=9,

A(6,0),

OA=6,

SADC=DCOA=27;

(3)(2)知,OC=OA=6,

∴△AOC為等腰直角三角形,

∴∠OAC=OCA=45°,AC=OA=6

如圖所示,連接OP,過點PPHOAH,

則△PHA為等腰直角三角形,

①當(dāng)△DCAOAP時,

=,

=,

AP=4

HP=HA=AP=4,OH=OA-HA=2,

P(2-4);

②當(dāng)△DCA∽△PAO時,

=,

=,

PA=

HP=HA=,

OH=OA-AH=

P(,-),

綜上所述,點P的坐標為(2,-4)(-)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等邊三角形ABC折疊,使得點A落在BC邊上的點D處,折痕為EF,點E,F分別在ABAC邊上.若AB6,BD2,則AEAF的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了提高學(xué)生學(xué)科能力,決定開設(shè)以下校本課程:A.文學(xué)院;B.小小數(shù)學(xué)家;C.小小外交家;D、未來科學(xué)家.為了了解學(xué)生最喜歡哪一項校本課程,學(xué)校隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

1)這次統(tǒng)計共抽查了   名學(xué)生;在扇形統(tǒng)計圖中,表示C類別的扇形圓心角度數(shù)為   

2)補全條形統(tǒng)計圖;

3)一班想從表達能力很強的甲、乙、丙、丁四名同學(xué)中,任選2名參加小小外交家小組,請用列表或畫樹狀圖的方法求恰好同時選中甲、乙兩名同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知已知拋物線經(jīng)過原點O和x軸上一點A(4,0),拋物線頂點為E,它的對稱軸與x軸交于點D,直線y=﹣2x﹣1經(jīng)過拋物線上一點B(﹣2,m)且與y軸交于點C,與拋物線的對稱軸交于點F.

(1)求m的值及該拋物線的解析式

(2)P(x,y)是拋物線上的一點,若S△ADP=S△ADC,求出所有符合條件的點P的坐標.

(3)點Q是平面內(nèi)任意一點,點M從點F出發(fā),沿對稱軸向上以每秒1個單位長度的速度勻速運動,設(shè)點M的運動時間為t秒,是否能使以Q、A、E、M四點為頂點的四邊形是菱形?若能,請直接寫出點M的運動時間t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,B的坐標分別為(-4,5),(-2,1).

(1)寫出點C及點C關(guān)于y軸對稱的點C的坐標;

(2)請作出△ABC關(guān)于y軸對稱的△ABC′;

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解我市九年級學(xué)生身體素質(zhì)情況,從全市九年級學(xué)生中隨機抽取了部分學(xué)生進行了一次體育考試科目測試(把測試結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:

1)本次抽樣測試的學(xué)生人數(shù)是   ;

2)圖1中∠α的度數(shù)是   °,把圖2條形統(tǒng)計圖補充完整;

3)全市九年級有學(xué)生6200名,如果全部參加這次體育科目測試,請估計不及格的人數(shù)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為4,∠A60°,E是邊AD的中點,F是邊BC上的一個動點,EGEF,且∠GEF60°,則GB+GC的最小值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】母親節(jié)前,某淘寶店從廠家購進某款網(wǎng)紅禮盒,已知該款禮盒每個成本價為30元.經(jīng)市場調(diào)查發(fā)現(xiàn),該禮盒每天的銷售量y(個)與銷售單價x(元)之間滿足一次函數(shù)關(guān)系.當(dāng)該款禮盒每個售價為40元時,每天可賣出300個;當(dāng)該款禮盒每個售價為55元時,每天可賣出150個.

1)求yx之間的函數(shù)解析式(不要求寫出x的取值范圍);

2)若該店老板想達到每天不低于240個的銷售量,則該禮盒每個售價定為多少元時,每天的銷售利潤最大,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A(0,2),B(2,2),C(-1,-2),拋物線F:y=x2-2mx+m2-2與直線x=-2交于點P.

(1)當(dāng)拋物線F經(jīng)過點C時,求它的解析式;

(2)設(shè)點P的縱坐標為yP,求yP的最小值,此時拋物線F上有兩點(x1,y1),(x2,y2),且x1<x2≤-2,比較y1y2的大小.

查看答案和解析>>

同步練習(xí)冊答案