如圖,以△ABC的三邊為邊,在BC的同側(cè)作三個(gè)等邊△ABD、△BEC、△ACF.
(1)判斷四邊形ADEF的形狀,并證明你的結(jié)論;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADEF是菱形?是矩形?
(1)由題意易得△BDE≌△BAC,則可得DE=AC=AF,同理可證EF=AB=AD,即可證得結(jié)論;(2)AB=AC時(shí)為菱形,∠BAC=150º時(shí)為矩形.
試題分析:(1)由題意易得△BDE≌△BAC,則可得DE=AC=AF,同理可證EF=AB=AD,即可證得結(jié)論;
(2)AB=AC時(shí),可得ADEF的鄰邊相等,所以ADEF為菱形,AEDF要是矩形,則∠DEF=90°,由∠DEF=∠BED+∠BEC+∠CEF,可推出∠BAC=150°時(shí)為矩形.
解:(1)四邊形ADEF為平行四邊形,
∵△ABD和△EBC都是等邊三角形,
∴BD=AB,BE=BC;
∵∠DBA=∠EBC=60°,
∴∠DBA-∠EBA=∠EBC-∠EBA
∴∠DBE=∠ABC;
∴△BDE≌△BAC
∴DE=AC=AF
同理可證:△ECF≌△BCA,
∴EF=AB=AD
∴ADEF為平行四邊形;
(2)AB=AC時(shí),?ADEF為菱形,當(dāng)∠BAC=150°時(shí)?ADEF為矩形.
理由是:∵AB=AC,
∴AD=AF.
∴?ADEF是菱形.
∴∠DEF=90°
=∠BED+∠BEC+∠CEF
=∠BCA+60°+∠CBA
=180-∠BAC+60°
=240°-∠BAC,
∴∠BAC=150°,
∵∠DAB=∠FAC=60°,
∴∠DAF=90°,
∴平行四邊形ADEF是矩形.
點(diǎn)評(píng):特殊四邊形的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識(shí)點(diǎn),一般難度不大,需熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:初中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
如圖,?ABCD的兩條對(duì)角線AC和BD相交于點(diǎn)O,并且BD=4,AC=6,BC=
.
(1)AC與BD有什么位置關(guān)系?為什么?
(2)四邊形ABCD是菱形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
如圖,在矩形ABCD中,E,F(xiàn)為BC上兩點(diǎn),且BE=CF,連接AF,DE交于點(diǎn)O.求證:
(1)△ABF≌△DCE;
(2)△AOD是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
如圖是某地下商業(yè)街的入口,數(shù)學(xué)課外興趣小組同學(xué)打算運(yùn)用所學(xué)知識(shí)測(cè)量側(cè)面支架最高點(diǎn)E到地面距離EF.經(jīng)測(cè)量,支架立柱BC與地面垂直,即∠BCA=90°,且BC=1.5cm,點(diǎn)F、A、C在同一條水平線上,斜桿AB與水平線AC夾角∠BAC=30°,支撐桿DE⊥AB于點(diǎn)D,該支架邊BE與AB夾角∠EBD=60°,又測(cè)得AD=1m。請(qǐng)你求出該支架邊BE及頂端E到地面距離EF長(zhǎng)度。
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
如圖,在□
中,已知
平分
交
邊于點(diǎn)
,則
等于
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知如圖,矩形ABCD中,點(diǎn)E是BC上一點(diǎn),AE=AD,DF⊥AE于F.求證:DF=DC.
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
如圖所示,
ABCD的周長(zhǎng)為l6cm,對(duì)角線AC與BD相交于點(diǎn)O,
交AD于E,連接CE,則△DCE的周長(zhǎng)為( )
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
如圖所示,平行四邊形ABCD的周長(zhǎng)是18cm,對(duì)角線AC、BD相交于點(diǎn)O,若△AOD與△AOB的周長(zhǎng)差是5cm,則邊AB的長(zhǎng)是
_________ cm.
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
已知矩形紙片ABCD中,AB=1,BC=2,將該紙片疊成一個(gè)平面圖形,折痕EF不經(jīng)過A點(diǎn)(E、F是該矩形邊界上的點(diǎn)),折疊后點(diǎn)A落在A
,處,給出以下判斷:
(1)當(dāng)四邊形A
,CDF為正方形時(shí),EF=
(2)當(dāng)EF=
時(shí),四邊形A
,CDF為正方形
(3)當(dāng)EF=
時(shí),四邊形BA
,CD為等腰梯形;
(4)當(dāng)四邊形BA
,CD為等腰梯形時(shí),EF=
。
其中正確的是
(把所有正確結(jié)論序號(hào)都填在橫線上)。
查看答案和解析>>