精英家教網 > 初中數學 > 題目詳情
(2012•漳州)已知拋物線y=
14
x2+1(如圖所示).
(1)填空:拋物線的頂點坐標是(
0
0
,
1
1
),對稱軸是
x=0(或y軸)
x=0(或y軸)
;
(2)已知y軸上一點A(0,2),點P在拋物線上,過點P作PB⊥x軸,垂足為B.若△PAB是等邊三角形,求點P的坐標;
(3)在(2)的條件下,點M在直線AP上.在平面內是否存在點N,使四邊形OAMN為菱形?若存在,直接寫出所有滿足條件的點N的坐標;若不存在,請說明理由.
分析:(1)根據函數的解析式直接寫出其頂點坐標和對稱軸即可;
(2)根據等邊三角形的性質求得PB=4,將PB=4代入函數的解析式后求得x的值即可作為P點的橫坐標,代入解析式即可求得P點的縱坐標;
(3)首先求得直線AP的解析式,然后設出點M的坐標,利用勾股定理表示出有關AP的長即可得到有關M點的橫坐標的方程,求得M的橫坐標后即可求得其縱坐標,
解答:解:(1)頂點坐標是(0,1),對稱軸是y軸(或x=O).

(2)∵△PAB是等邊三角形,
∴∠ABO=90°-60°=30°.
∴AB=20A=4.
∴PB=4.
解法一:把y=4代入y=
1
4
x2+1,
得  x=±2
3

∴P1(2
3
,4),P2(-2
3
,4).  
解法二:∴OB=
AB2-OA2
=2
3

∴P1(2
3
,4).    
根據拋物線的對稱性,得P2(-2
3
,4). 

(3)∵點A的坐標為(0,2),點P的坐標為(2
3
,4)
∴設線段AP所在直線的解析式為y=kx+b
b=2
2
3
k+b=4

解得:
k=
3
3
b=2

∴解析式為:y=
3
3
x+2
設存在點N使得OAMN是菱形,
∵點M在直線AP上,
∴設點M的坐標為:(m,
3
3
m+2)
如圖,作MQ⊥y軸于點Q,則MQ=m,AQ=OQ-OA=
3
3
m+2-2=
3
3
m
∵四邊形OAMN為菱形,
∴AM=AO=2,
∴在直角三角形AMQ中,AQ2+MQ2=AM2
即:m2+(
3
3
m)2=22
解得:m=±
3

代入直線AP的解析式求得y=3或1,
當P點在拋物線的右支上時,分為兩種情況:
當N在右圖1位置時,
∵OA=MN,
∴MN=2,
又∵M點坐標為(
3
,3),
∴N點坐標為(
3
,1),即N1坐標為(
3
,1).
當N在右圖2位置時,
∵MN=OA=2,M點坐標為(-
3
,1),
∴N點坐標為(-
3
,-1),即N2坐標為(-
3
,-1).
當P點在拋物線的左支上時,分為兩種情況:
第一種是當點M在線段PA上時(PA內部)我們求出N點坐標為(-
3
,1);
第二種是當M點在PA的延長線上時(在第一象限)我們求出N點坐標為(
3
,-1)
∴存在N1
3
,1),N2(-
3
,-1)N3(-
3
,1),N4
3
,-1)使得四邊形OAMN是菱形.
點評:本題考查了二次函數的應用,解題的關鍵是仔細讀題,并能正確的將點的坐標轉化為線段的長,本題中所涉及的存在型問題更是近幾年中考的熱點問題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•漳州)極具特色的“八卦樓”(又稱“威鎮(zhèn)閣”)是漳州的標志性建筑,它建立在一座平臺上.為了測量“八卦樓”的高度AB,小華在D處用高1.1米的測角儀CD,測得樓的頂端A的仰角為22°;再向前走63米到達F處,又測得樓的頂端A的仰角為39°(如圖是他設計的平面示意圖).已知平臺的高度BH約為13米,請你求出“八卦樓”的高度約多少米?
(參考數據:sin22°≈
7
20
,tan22°≈
2
5
,sin39°≈
16
25
,tan39°≈
4
5

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•漳州)某校為實施國家“營養(yǎng)早餐”工程,食堂用甲、乙兩種原料配制成某種營養(yǎng)食品,已知這兩種原料的維生素C含量及購買這兩種原料的價格如下表:
        原料
維生素C及價格
甲種原料 乙種原料
維生素C(單位/千克) 600 400
原料價格(元/千克) 9 5
現(xiàn)要配制這種營養(yǎng)食品20千克,要求每千克至少含有480單位的維生素C.設購買甲種原料x千克.
(1)至少需要購買甲種原料多少千克?
(2)設食堂用于購買這兩種原料的總費用為y元,求y與x的函數關系式.并說明購買甲種原料多少千克時,總費用最少?

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•漳州模擬)已知等腰三角形的兩邊長為4,8,則第三邊的長度是
8
8

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•漳州二模)已知函數y=x2-2x+c(c為常數)的圖象上有兩點A(x1,y1),B(x2,y2).若x1<1<x2且x1+x2>2,則y1與y2的大小關系是
y1<y2
y1<y2

查看答案和解析>>

同步練習冊答案