如圖,在平面直角坐標(biāo)系中,直線交x軸于A點(diǎn),交y軸于B點(diǎn),點(diǎn)C是線段AB的中點(diǎn),連接OC,然后將直線OC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)30°交x軸于點(diǎn)D,則△ODC的面積為   
【答案】分析:通過直線的解析式可以求出A、B的坐標(biāo),從而求出OA、OB的長度,再利用勾股定理求出AB的長度,利用三角函數(shù)值還可以求出∠BAO=30°,通過直角三角形的性質(zhì)可以求得△BOC為等邊三角形,在△ADC中作出AD邊上的高,用解直角三角形的方法求出其高及AD的長度就可以求出OD的長度,從而求出面積.
解答:解:作CE⊥AD于點(diǎn)E,
∴∠AEC=90°.
,
∴x=0時(shí),y=,即OB=
y=0時(shí),x=3,即OA=3,
在Rt△ABO中,由勾股定理得:
AB=2
∴sin∠OAB==,
∴∠OAB=30°,∠OBA=60°,OB=AB
∵點(diǎn)C是線段AB的中點(diǎn),
∴OC=BC=AC=AB=
∴OC=OB=BC=,∠COA=∠CAO=30°
∴△BOC為等邊三角形,∠OCA=120°
∵∠OCD=30°,
∴∠ACD=90°
∴在Rt△ACD中由勾股定理得:
CD=1,AD=2,
∴OD=1,
在Rt△ACE中由勾股定理得:
CE=
∴S△OCD==

故答案為:
點(diǎn)評(píng):本題是一道一次函數(shù)的綜合試題,考查了一次函數(shù)的圖象,直角三角形斜邊上中線的運(yùn)用,旋轉(zhuǎn)的性質(zhì),勾股定理的運(yùn)用,三角形的面積公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案