【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE、BD.
(1)猜想PM與PN的數(shù)量關系及位置關系,請直接寫出結論;
(2)現(xiàn)將圖①中的△CDE繞著點C順時針旋轉α(0°<α<90°),得到圖②,AE與MP、BD分別交于點G、H.請判斷(1)中的結論是否成立?若成立,請證明;若不成立,請說明理由;
(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數(shù)量關系,并加以證明.
【答案】
(1)
解:PM=PN,PM⊥PN,理由如下:
∵△ACB和△ECD是等腰直角三角形,
∴AC=BC,EC=CD,∠ACB=∠ECD=90°.
在△ACE和△BCD中
,
∴△ACE≌△BCD(SAS),
∴AE=BD,∠EAC=∠CBD,
∵點M、N分別是斜邊AB、DE的中點,點P為AD的中點,
∴PM= BD,PN= AE,
∴PM=PM,
∵PM∥BD,PN∥AE,AE⊥BD,
∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,
∴∠MPA+∠NPC=90°,
∴∠MPN=90°,
即PM⊥PN;
(2)
解:∵△ACB和△ECD是等腰直角三角形,
∴AC=BC,EC=CD,
∠ACB=∠ECD=90°.
∴∠ACB+∠BCE=∠ECD+∠BCE.
∴∠ACE=∠BCD.
∴△ACE≌△BCD.
∴AE=BD,∠CAE=∠CBD.
又∵∠AOC=∠BOE,
∠CAE=∠CBD,
∴∠BHO=∠ACO=90°.
∵點P、M、N分別為AD、AB、DE的中點,
∴PM= BD,PM∥BD;
PN= AE,PN∥AE.
∴PM=PN.
∴∠MGE+∠BHA=180°.
∴∠MGE=90°.
∴∠MPN=90°.
∴PM⊥PN.
(3)
解:PM=kPN
∵△ACB和△ECD是直角三角形,
∴∠ACB=∠ECD=90°.
∴∠ACB+∠BCE=∠ECD+∠BCE.
∴∠ACE=∠BCD.
∵BC=kAC,CD=kCE,
∴ =k.
∴△BCD∽△ACE.
∴BD=kAE.
∵點P、M、N分別為AD、AB、DE的中點,
∴PM= BD,PN= AE.
∴PM=kPN.
【解析】(1)由等腰直角三角形的性質易證△ACE≌△BCD,由此可得AE=BD,再根據(jù)三角形中位線定理即可得到PM=PN,由平行線的性質可得PM⊥PN;(2)(1)中的結論仍舊成立,由(1)中的證明思路即可證明;(3)PM=kPN,由已知條件可證明△BCD∽△ACE,所以可得BD=kAE,因為點P、M、N分別為AD、AB、DE的中點,所以PM= BD,PN= AE,進而可證明PM=kPN.
科目:初中數(shù)學 來源: 題型:
【題目】每年5月的第二周為:“職業(yè)教育活動周”,今年我市展開了以“弘揚工匠精神,打造技能強國”為主題的系列活動,活動期間某職業(yè)中學組織全校師生并邀請學生家長和社區(qū)居民參加“職教體驗觀摩”活動,相關職業(yè)技術人員進行了現(xiàn)場演示,活動后該校隨機抽取了部分學生進行調查:“你最感興趣的一種職業(yè)技能是什么?”并對此進行了統(tǒng)計,繪制了統(tǒng)計圖(均不完整).
(1)補全條形統(tǒng)計圖和扇形統(tǒng)計圖;
(2)若該校共有3000名學生,請估計該校對“工藝設計”最感興趣的學生有多少人?
(3)要從這些被調查的學生中隨機抽取一人進行訪談,那么正好抽到對“機電維修”最感興趣的學生的概率是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,AB∥CD,分別探究下列四個圖形(圖①、②、③、④)中∠APC和∠PAB、∠PCD的數(shù)量關系,用等式表示出來.
(1)設∠APC=m,∠PAB=n,∠PCD=t.
請用含m,n,t的等式表示四個圖形中相應的∠APC和∠PAB、∠PCD的數(shù)量關系.(直接寫出結果)
圖①: ;
圖②: ;
圖③: ;
圖④: .
(2)在(1)中的4個結論中選出一個你喜歡的結論加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線L:y=﹣x+2與x軸、y軸分別交于A、B兩點,在y軸上有一點N(0,4),動點M從A點以每秒1個單位的速度勻速沿x軸向左移動.
(1)點A的坐標:_____;點B的坐標:_____;
(2)求△NOM的面積S與M的移動時間t之間的函數(shù)關系式;
(3)在y軸右邊,當t為何值時,△NOM≌△AOB,求出此時點M的坐標;
(4)在(3)的條件下,若點G是線段ON上一點,連結MG,△MGN沿MG折疊,點N恰好落在x軸上的點H處,求點G的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2016年共享單車橫空出世,更好地解決了人們“最后一公里”出行難的問題,截止到2016年底,已知“摩拜單車”投放數(shù)量有50萬輛,“ofo共享單車”的投放數(shù)量是“摩拜單車”投放數(shù)量的1.6倍,“ofo共享單車”注冊用戶量比“摩拜單車”的注冊用戶量多210萬人,據(jù)統(tǒng)計使用一輛“ofo共享單車”的平均人數(shù)比使用一輛“摩拜單車”的平均人數(shù)少3人,假設注冊這兩種單車的用戶都在使用共享單車,求2016年“ofo共享單車”和“摩拜單車”的注冊用戶量各多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形BCDE的各邊分別平行于x軸或y軸,物體甲和物體乙分別由點A(2,0)同時出發(fā),沿矩形BCDE的邊作環(huán)繞運動,物體甲按逆時針方向以1個單位/秒勻速運動,物體乙按順時針方向以2個單位/秒勻速運動,則兩個物體運動后的第2012次相遇地點的坐標是【 】
A.(2,0) B.(-1,1) C.(-2,1) D.(-1,-1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=2,以點A為圓心,AC的長為半徑作 交AB于點E,以點B為圓心,BC的長為半徑作 交AB于點D,則陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點D為△ABC邊BC的延長線上一點.
(1)若∠A∶∠ABC=3∶4,∠ACD=140°,求∠A的度數(shù);
(2)若∠ABC的角平分線與∠ACD的角平分線交于點M,過點C作CP⊥BM于點P.
求證: ;
(3)在(2)的條件下,將△MBC以直線BC為對稱軸翻折得到△NBC,∠NBC的角平分線與∠NCB的角平分線交于點Q(如圖2),試探究∠BQC與∠A有怎樣的數(shù)量關系,請寫出你的猜想并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(7分)某學校舉行演講比賽,選出了10名同學擔任評委,并事先擬定從如下4個方案中選擇合理的方案來確定每個演講者的最后得分(滿分為10分):
方案1:所有評委所給分的平均數(shù),
方案2:在所有評委所給分中,去掉一個最高分和一個最低分.然后再計算其余給分的l平均數(shù).
方案3:所有評委所給分的中位效.
方案4:所有評委所給分的眾數(shù).
為了探究上述方案的合理性.先對某個同學的演講成績進行了統(tǒng)計實驗.下面是這個同學的得分統(tǒng)計圖:
(1)分別按上述4個方案計算這個同學演講的最后得分;
(2)根據(jù)(1)中的結果,請用統(tǒng)計的知識說明哪些方案不適臺作為這個同學演講的最后得分,并給出該同學的最后得分.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com