【題目】如圖,拋物線x軸交于A(-1,0)、B兩點(diǎn), 與y軸交于點(diǎn)C(0,2), 拋物線的對稱軸交x軸于點(diǎn)D.

1)求拋物線的解析式;

2)求sinABC的值;

3)在拋物線的對稱軸上是否存在點(diǎn)P,使PCD是以CD為腰的等腰三角形,如果存在,直接寫出點(diǎn)P的坐標(biāo);如果不存在,請說明理由;

4)點(diǎn)E是線段BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Ex軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí)線段EF最長?求出此時(shí)E點(diǎn)的坐標(biāo).

【答案】(1)解析式為;

(2);

(3)存在,點(diǎn)P的坐標(biāo)為(, )、(,4)或(,-).

(4)當(dāng)點(diǎn)E坐標(biāo)為(2,1)時(shí),線段EF最長.

【解析】試題分析: 1)把A-1,0),C0,2)代入y=-x2+bx+c列方程組即可.

2)令y=0,求出x的值,可確定點(diǎn)B的坐標(biāo),然后由點(diǎn)B、C的坐標(biāo),利用勾股定理可求出BC的長,即可求sinABC的值

3)由勾股定理求出CD的值,再以點(diǎn)C為圓心,CD為半徑作弧交對稱軸于P1,以點(diǎn)D為圓心CD為半徑作圓交對稱軸于點(diǎn)P2,P3,作CE垂直于對稱軸與點(diǎn)E,由等腰三角形的性質(zhì)及勾股定理就可以求出結(jié)論;

4)設(shè)出E點(diǎn)的坐標(biāo)為(x,-x+2),就可以表示出F的坐標(biāo),進(jìn)而求出EF的長,由二次函數(shù)的性質(zhì)可求出答案.

試題解析:1∵拋物線過點(diǎn)A-1,0),C02),

b=,c=2

∴解析式為

(2)∵點(diǎn)B的坐標(biāo)為(4,0),

BC=

(3)存在.

∵點(diǎn)D的坐標(biāo)為(,0),

∴點(diǎn)P的坐標(biāo)為(, )、(,4)或(,- ).

(4)設(shè)直線BC的解析式為

BC兩點(diǎn)坐標(biāo)分別為(4,0)、(0,2),

4m+n=0,n=2,

m=,n=2

∴直線BC的解析式為

設(shè)E點(diǎn)坐標(biāo)為,F點(diǎn)坐標(biāo)為

∴當(dāng)點(diǎn)E坐標(biāo)為(2,1)時(shí),線段EF最長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)A(2,﹣3)在反比例函數(shù)y= 的圖像上.
(1)試判斷點(diǎn)B(﹣1,6),C(﹣3,﹣2)是否在這個(gè)反比例函數(shù)的圖像上,請說明理由;
(2)若P(a﹣1,b),Q(a,c)也在這個(gè)反比例函數(shù)的圖像上,且a<0,試比較b,c的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C在線段AB上,點(diǎn)M、N分別是AC、BC的中點(diǎn).

(1)若AC=8cm,CB=6cm,求線段MN的長;
(2)若C為線段AB上任一點(diǎn),滿足AC+CB=a,其它條件不變,你能猜想MN的長度嗎?寫出你的結(jié)論并說明理由;
(3)若C為直線AB上線段AB之外的任一點(diǎn),且AC=m,CB=n,則線段MN的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD⊥BC于D點(diǎn),E、F分別為DB、DC的中點(diǎn),則圖中共有全等三角形對.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)所示,∠AOB、∠COD都是直角.

(1)試猜想∠AOD與∠COB在數(shù)量上是相等,互余,還是互補(bǔ)的關(guān)系.請你用推理的方法說明你的猜想是合理的.
(2)當(dāng)∠COD繞著點(diǎn)O旋轉(zhuǎn)到圖(2)所示位置時(shí),你在(1)中的猜想還成立嗎?請你證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分線EF交AC于點(diǎn)E,交BC于點(diǎn)F.求證:BF=2CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解市民“獲取新聞的最主要途徑”,某市記者開展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息解答下列問題:

(1)這次抽樣調(diào)查的樣本容量是 ;

(2)通過“電視”了解新聞的人數(shù)占被調(diào)查人數(shù)的百分比為 ;扇形統(tǒng)計(jì)圖中, “手機(jī)上網(wǎng)”所對應(yīng)的圓心角的度數(shù)是

(3)請補(bǔ)全條形統(tǒng)計(jì)圖;

(4)若該市約有70萬人,請你估計(jì)其中將“電腦和手機(jī)上網(wǎng)”作為“獲取新聞的最主要途徑”的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b、c滿足:① 與2x2+ay3的和是單項(xiàng)式; ②
(1)求a、b、c的值;
(2)求代數(shù)式(5b2﹣3c2)﹣3(b2﹣c2)﹣(﹣c2)+2016abc的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某同學(xué)把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是(

A.帶①去
B.帶②去
C.帶③去
D.帶①和②去

查看答案和解析>>

同步練習(xí)冊答案