如圖,PA為⊙O的切線,A為切點(diǎn),PBC為割線,∠APC的平分線PF交AC于點(diǎn)F,交AB于點(diǎn)E.
(1)求證:AE=AF;
(2)若PB:PA=1:2,M是上的點(diǎn),AM交BC于D,且PD=DC,試確定M點(diǎn)在BC上的位置,并證明你的結(jié)論.
【答案】分析:(1)根據(jù)∠AEF=∠APF+∠PAB;同理可得∠AFP=∠FPC+∠C;由弦切角定理知:∠PAB=∠C,由PF平分∠APC知:∠APF=∠CPF;故∠AEF=∠AFE,由此得證.
(2)根據(jù)切割線定理首先得出PD=DC=2x,進(jìn)而得出PA=PD,再得出AN⊥EF,進(jìn)而得出∠EAN=∠FAN,得出=,即M點(diǎn)在的中點(diǎn)上原題得證.
解答:(1)證明:∵PF平分∠APC,
∴∠1=∠2,
又∵PA是⊙O的切線,
∴∠C=∠PAB.
∵∠AEF=∠1+∠PAB,∠AFE=∠2+∠C,
∴∠AEF=∠AFE,即AE=AF.

(2)解:M點(diǎn)在的中點(diǎn)上,
證明:∵PA為⊙O的切線,A為切點(diǎn),PBC為割線,
∴PA2=PB×PC,
∵PB:PA=1:2,
假設(shè)PB=x,PA=2x,
∴4x2=x•PC,
∴PC=4x,
∵PD=DC,
∴PD=DC=2x,
∴PA=PD,
又∵∠1=∠2,
∴PN⊥AD,(等腰三角形的三線合一),
∴AN⊥EF,
∵AE=AF,
∴∠EAN=∠FAN,
=
∴M點(diǎn)在的中點(diǎn)上.
點(diǎn)評(píng):此題主要考查了三角形外角的性質(zhì)、弦切角定理、圓周角定理的推論和等腰三角形的判定和性質(zhì)等知識(shí),根據(jù)已知得出AN⊥EF是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、如圖,PA、PB分別切⊙O于點(diǎn)A、B,點(diǎn)E是⊙O上一點(diǎn),且∠AEB=60°,則∠P的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、如圖,PA、PB分別切⊙O于A、B兩點(diǎn),如果∠P=60°,PA=2,那么AB的長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

6、如圖,PA、PB分別切⊙O于點(diǎn)A、B,M是劣弧AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)A、B除外),過(guò)M作⊙O的切線分別交PA、PB于點(diǎn)C、D.設(shè)CM的長(zhǎng)為x,△PCD的周長(zhǎng)為y,在下列圖象中,大致表示y與x之間的函數(shù)關(guān)系的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•莆田質(zhì)檢)如圖,PA、PB分別切⊙O于A、B兩點(diǎn),點(diǎn)C在優(yōu)弧
ACB
上,∠P=80°,則∠C的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,PA,PB分別切⊙O于點(diǎn)A和點(diǎn)B,C是
AB
上任一點(diǎn),過(guò)C的切線分別交PA,PB于D,E.若⊙O的半徑為6,PO=10,則△PDE的周長(zhǎng)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案