如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,且OA=3,AB=6.點(diǎn)P從點(diǎn)O出發(fā)沿OA以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),到達(dá)點(diǎn)A后立刻以原來的速度沿AO返回;點(diǎn)Q從點(diǎn)A出發(fā)沿AB以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B勻速運(yùn)動(dòng).伴隨著P、Q的運(yùn)動(dòng),DE保持垂直平分PQ,且交PQ于點(diǎn)D,交折線QB-BO-OP于點(diǎn)E.點(diǎn)P、Q同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng),點(diǎn)P也隨之停止.設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間是t秒(t>0).
(1)求直線AB的解析式;
(2)在點(diǎn)P從O向A運(yùn)動(dòng)的過程中(不包括A、O),求△APQ的面積S與t之間的函數(shù)關(guān)系式,并直接寫出t的取值范圍;
(3)在點(diǎn)E從B向O運(yùn)動(dòng)的過程中,完成下面問題:
四邊形QBED能否成為直角梯形?若能,請(qǐng)求出t的值;若不能,請(qǐng)說明理由;
(1)直線AB的解析式為                         (1分)
(2)
                                  (2分)
)                                         (1分)
(3)四邊形QBED能成為直角梯形.
①(Ⅰ)當(dāng)DE∥QB時(shí),
∵DE⊥PQ,
∴PQ⊥QB,四邊形QBED是直角梯形.
此時(shí)∠AQP=90°.
由(2)得AP=2AQ,即3-t=2t                                  (2分)
解得t= 1;                                                   (1分)
(Ⅱ)當(dāng)PQ∥BO時(shí),
∵DE⊥PQ,
∴DE⊥BO,四邊形QBED是直角梯形.
此時(shí)∠APQ=90°.
由(2)得AQ=2AP,即2(3-t)=t                              (1分)
解得t= 2   
(1)首先由在Rt△AOB中,OA=3,AB=5,求得OB的值,然后利用待定系數(shù)法即可求得二次函數(shù)的解析式;
(2)過點(diǎn)Q作QF⊥AO于點(diǎn)F,由△AQF∽△ABO,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,借助于方程即可求得QF的長(zhǎng),然后即可求得△APQ的面積S與t之間的函數(shù)關(guān)系式;
(3)分別從DE∥QB與PQ∥BO去分析,借助于相似三角形的性質(zhì),即可求得t的值;
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=x2﹣2x+c的頂點(diǎn)A在直線l:y=x﹣5上.

(1)求拋物線頂點(diǎn)A的坐標(biāo);
(2)設(shè)拋物線與y軸交于點(diǎn)B,與x軸交于點(diǎn)C.D(C點(diǎn)在D點(diǎn)的左側(cè)),試判斷△ABD的形狀;
(3)是否存在一點(diǎn)P,使以點(diǎn)P、A.B.D為頂點(diǎn)的四邊形是平行四邊形?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.
(1)求的取值范圍;
(2)拋物線軸交于、兩點(diǎn).若且直線:經(jīng)過點(diǎn),求拋物線的函數(shù)解析式;
(3)在(2)的條件下,直線:繞著點(diǎn)旋轉(zhuǎn)得到直線,設(shè)直線軸交于點(diǎn),與拋物線交于點(diǎn)不與點(diǎn)重合),當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

自變量為x的二次函數(shù)
(1),求函數(shù)值y的最大值與最小值;并分別指出所對(duì)應(yīng)的自變量x的值;
(2)當(dāng)a變化時(shí),該二次函數(shù)圖象是否經(jīng)過定點(diǎn)?若是,請(qǐng)求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說明理由;
(3)若該二次函數(shù)圖象與x軸有兩個(gè)不同的交點(diǎn),而且兩交點(diǎn)的橫坐標(biāo)均小于-1,求a的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,△ABC的A、B兩個(gè)頂點(diǎn)在x軸上,頂點(diǎn)C在y軸的負(fù)半軸上.已知OA:OB=1:5,OB=OC,△ABC的面積SABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點(diǎn)

(1)求此拋物線的函數(shù)表達(dá)式;
(2)設(shè)E是y軸右側(cè)拋物線上異于點(diǎn)B的一個(gè)動(dòng)點(diǎn),過點(diǎn)E作x軸的平行線交拋物線于另一點(diǎn)F,過點(diǎn)F作FG垂直于x軸于點(diǎn)G,再過點(diǎn)E作EH垂直于x軸于點(diǎn)H,得到矩形EFGH.則在點(diǎn)E的運(yùn)動(dòng)過程中,當(dāng)矩形EFGH為正方形時(shí),求出該正方形的邊長(zhǎng);
(3)在拋物線上是否存在異于B、C的點(diǎn)M,使△MBC中BC邊上的高為?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+2x+c的圖象與x軸交于點(diǎn)A(3,0)和點(diǎn)C,與y軸交于點(diǎn)B(0,3).

(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸上找一點(diǎn)D,使得點(diǎn)D到點(diǎn)B、C的距離之和最小,并求出點(diǎn)D的坐標(biāo);
(3)在第一象限的拋物線上,是否存在一點(diǎn)P,使得△ABP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的頂點(diǎn)坐標(biāo)是          .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線,當(dāng)自變量取兩個(gè)不同的數(shù)值  時(shí),函數(shù)值相等,則當(dāng)自變量時(shí)的函數(shù)值與(        )
A.時(shí),函數(shù)值相等B.時(shí),函數(shù)值相等
C.時(shí),函數(shù)值相等D.時(shí),函數(shù)值相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線軸的一個(gè)交點(diǎn)為,則代數(shù)式的值為()
A.2010B.2012 C.2013D.2014

查看答案和解析>>

同步練習(xí)冊(cè)答案