【題目】如圖

(1)如圖1,學校A,B在道路MN的異側(cè).在MN上建公交站P,使得P到A,B的距離相等。利用尺規(guī)作圖確定P的位置.

(2)如圖2,學校C,D在道路MN的同側(cè),在MN上建公交站Q,使得Q到C,D的距離的和最短.利用網(wǎng)格確定Q的位置.

【答案】(1)見解析;(2)見解析.

【解析】

1)連接AB,由垂直平分線的性質(zhì)可知在垂直平分線上的點到A和B的距離相等,所以首先作出AB的垂直平分線,垂直平分線與MN的交點就是P點位置;

2)先做D關于MN對稱的點E,再連接CEMN交于一點Q,兩點之間直線最短,此時CE的距離最短,根據(jù)對稱點的性質(zhì)可知QE=QD,所以此時Q點建公交站離兩學校距離最短.

1)連接AB,分別以A、B為圓心,大于AB長為半徑畫弧,兩弧交于點EF,過E、F畫直線,直線EFMN的交點就是P;

2)過點D作其關于MN對稱的點E,連接CEMN交于一點Q,Q點即為所求;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y= 2+b+cx軸交于A-1,0),B3,0)兩點,與y軸交于點C.

1求該拋物線的解析式;

2M是拋物線的對稱軸與直線BC的交點,N是拋物線的頂點,求MN的長;

3設點P是(1)中的拋物線的一個動點,是否存在滿足SPAB=8的點P?如存在請求出P的坐標;若不存在,請說明理由.

1 備用圖

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為12 ,點B在點A右邊,且OA2OB

1)寫出數(shù)軸上點 B 表示的數(shù);

2)點 M 為數(shù)軸上一點,若 AM BM 4 ,求出點 M 表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2011貴州安順,17,4分)已知:如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),點DOA的中點,點PBC上運動,當ODP是腰長為5的等腰三角形時,則P點的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】求證:對角線互相平分的四邊形是平行四邊形.

小明同學根據(jù)題意畫出了圖形,并寫出了已知和求證的一部分,請你補全已知和求證,并寫出證明過程:

已知:如圖,在四邊形ABCD中,AC、BD相交于點O,    

求證:    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=3,∠B=50°,點D在BC邊上(不與點B,C重合),連接AD,作∠ADE=50°,DE交邊AC于點E.

(1)當∠BAD=20°時,求∠CDE的度數(shù);

(2)當CD等于多少時,△ABD≌△DCE?為什么?

(3)在點D運動的過程中,△ADE可能是等腰三角形嗎?若可能,直接寫出∠DAE的度數(shù);若不可能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校體育組對本校九年級全體同學體育測試情況進行調(diào)查,他們隨機抽查部分同學體育測試成績(由高到低分為A、BC、D四個等級),根據(jù)調(diào)查的數(shù)據(jù)繪制成如圖的條形統(tǒng)計圖和扇形統(tǒng)計圖.請根據(jù)以下不完整的統(tǒng)計圖提供的信息,解答下列問題:

(1)該課題研究小組共抽查了   名同學的體育測試成績,扇形統(tǒng)計圖中B級所占的百分比b=  ;

(2)補全條形統(tǒng)計圖;

(3)若該校九年級共有300名同學,請估計該校九年級同學體育測試達標(測試成績C級以上,含C級)共多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市用3 000元購進某種干果銷售,由于銷售狀況良好,超市又調(diào)撥9 000元購進該種干果,但這次的進價比第一次的進價提高了20%,購進干果數(shù)量比第一次的2倍還多300 kg.如果超市按9/kg的價格出售,當大部分干果售出后,余下的600 kg按售價的八折售完.

(1)該種干果第一次的進價是多少?

(2)超市銷售這種干果共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解學生課余活動情況,某校對參加繪畫、書法、舞蹈、樂器這四個課外興趣小組的人員分布情況進行抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下面的問題:

(1)此次共調(diào)查了多少名同學?

(2)將條形統(tǒng)計圖補充完整,并計算扇形統(tǒng)計圖中書法部分的圓心角的度數(shù);

(3)如果該校共有名學生參加這個課外興趣小組,而每位教師最多只能輔導本組的名學生,估計每個興趣小組至少需要準備多少名教師.

查看答案和解析>>

同步練習冊答案