【題目】1)化簡求值:(a-b)(a+b+a2b-a),其中a=,b=-2

2)已知x2-2x=1,求(x-1)(3x+1-x+12的值.

【答案】1-b2+2ab-10;(20

【解析】

1)先按照平方差公式及單項式乘以多項式的運算法則展開化簡,再將a=b=-2代入計算即可.

2)先將(x-1)(3x+1-x+12轉化成含有x2-2x的形式,再將x2-2x整體代入求值.

1)解:(a+b)(a-b+a2b-a=a2-b2+2ab-a2=-b2+2ab

a=b=-2時;

原式= --22+2××-2=-4-6=-10

2)原式=3x2+x-3x-1-x2-2x-1=2x2-4x-2
x2-2x=1時,
原式=2x2-2x-2=2×1-2=0

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小明在他家里的時鐘上安裝了一個電腦軟件,他設定當鐘聲在n點鐘響起后,下一次則在(3n﹣1)小時后響起,例如鐘聲第一次在3點鐘響起,那么第2次在(3×3﹣1=8)小時后,也就是11點響起,第3次在(3×11﹣1=32)小時后,即7點響起,以此類推…;現(xiàn)在第1次鐘聲響起時為2點鐘,那么第3次響起時為_____點,第2017次響起時為_____點(如圖鐘表,時間為12小時制).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, AB=CB, BD=BE, ABC=DBE=α.

(1)當α=60°, 如圖則,∠DPE的度數(shù)______________

(2)BDE繞點B旋轉一定角度,如圖所示,求∠DPE(用α表示)

(3)當α=90°,其他條件不變,FAD的中點,求證 EC BF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,A=30°,AB=4,動點P從點A出發(fā),沿AB以每秒2個單位長度的速度向終點B運動.過點PPDAC于點D(點P不與點A、B重合),作∠DPQ=60°,邊PQ交射線DC于點Q.設點P的運動時間為t秒.

(1)用含t的代數(shù)式表示線段DC的長;

(2)當點Q與點C重合時,求t的值;

(3)設△PDQ與△ABC重疊部分圖形的面積為S,求St之間的函數(shù)關系式;

(4)當線段PQ的垂直平分線經(jīng)過△ABC一邊中點時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,ABCD,試解決下列問題:

(1)圖(1)中,1+2+3=

(2)圖(2)中,1+2+3+4= ;

(3)圖(3)中,1+2+3++n=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=10,點EF是正方形內(nèi)兩點,AE=FC=6,BE=DF=8,EF的長為( )

A. B. C. D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,一個點從原點O出發(fā),按向右向上向右向下的順序依次不斷移動,每次移動1個單位,其移動路線如圖所示,第1次移到點A1,第二次移到點A2,第三次移到點A3,,第n次移到點An,則點A2019的坐標是_____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一次函數(shù)y=mx+2的圖象經(jīng)過點(﹣2,6).

(1)求m的值;

(2)畫出此函數(shù)的圖象;

(3)平移此函數(shù)的圖象,使得它與兩坐標軸所圍成的圖形的面積為4,請直接寫出此時圖象所對應的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一張長為a、寬為b的長方形紙片上,剪掉一個大圓和兩個半徑相等的小圓.

1)列出剩余紙片(圖中陰影部分)面積的代數(shù)式;(結果要求化簡)

2)當a6cm,b4cm時,求陰影部分的面積,(π3.14

查看答案和解析>>

同步練習冊答案