【題目】甲、乙兩家草莓采摘園的草莓品質(zhì)相同,銷售價格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進園需購買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,設(shè)某游客的草莓采摘量為x(千克),在甲采摘園所需總費用為(元),在乙采摘園所需總費用為(元),圖中折線OAB表示與x之間的函數(shù)關(guān)系.

(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價格是每千克 元;

(2)求、與x的函數(shù)表達式;

(3)在圖中畫出與x的函數(shù)圖象,并寫出選擇甲采摘園所需總費用較少時,草莓采摘量x的范圍.

【答案】(1)30;(2);(3)<x<

【解析】

試題分析:(1)根據(jù)單價=總價÷數(shù)量,即可解決問題.

(2)y1函數(shù)表達式=50+單價×數(shù)量,y2與x的函數(shù)表達式結(jié)合圖象利用待定系數(shù)法即可解決.

(3)畫出函數(shù)圖象后y1在y2下面即可解決問題.

試題解析:(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價格是每千克300÷10=30元.

故答案為:30.

(2)由題意,;

(3)函數(shù)y1的圖象如圖所示,由解得,所以點F坐標(,125),由,解得,所以點E坐標(,650).

由圖象可知甲采摘園所需總費用較少時<x<

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,點在第一象限,過點Ax軸作垂線,垂足為點B,連接OA,,點MO出發(fā),沿y軸的正半軸以每秒2個單位長度的速度運動,點N從點B出發(fā)以每秒3個單位長度的速度向x軸負方向運動,點M與點N同時出發(fā),設(shè)點M的運動時間為t秒,連接AM,ANMN

a的值;

時,

請?zhí)骄?/span>,,之間的數(shù)量關(guān)系,并說明理由;

試判斷四邊形AMON的面積是否變化?若不變化,請求出其值;若變化,請說明理由.

時,請求出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式組 的正整數(shù)解是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠MAN=120°,AC平分∠MAN.B、D分別在射線AN、AM.

(1)在圖1中,當∠ABC=ADC=90°時,求證:AD+AB=AC

(2)若把(1)中的條件ABC=ADC=90°”改為∠ABC+ADC=180°,其他條件不變,如圖2所示,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.

(圖1) (圖2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點P在BA的延長線上,PD切⊙O于點D,過點B作BE垂直于PD,交PD的延長線于點C,連接AD并延長,交BE于點E.

(1)求證:AB=BE;
(2)若PA=2,cosB= ,求⊙O半徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于反比例函數(shù) , 下列說法正確的是( 。
A.圖象經(jīng)過點(2,﹣1)
B.圖象位于第二、四象限
C.當x<0時,y隨x的增大而減小
D.當x>0時,y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,過對角線AC的中點O作垂線EF交邊BC,AD分別為點EF,連接AECF.

(1)求證:四邊形AECF是菱形;

(2)AD8AB4,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了節(jié)約用水,某市規(guī)定三口之家每月標準用水量為15立方米,單價為1.5元/立方米,超過部分單價為3元/立方米,某三口之家當月用水立方米(且為整數(shù))

⑴.請用正式表示用水立方米的費用;

⑵.三口之家當月繳水費37.50元,這月用了多少立方米的水.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知兩個函數(shù),如果對于任意的自變量x,這兩個函數(shù)對應(yīng)的函數(shù)值記為y1 , y2 , 都有點(x,y1)、(x,y2)關(guān)于點(x,x)對稱,則稱這兩個函數(shù)為關(guān)于y=x的對稱函數(shù).例如, 為關(guān)于y=x的對稱函數(shù).
(1)判斷:① ;② ;③ ,其中為關(guān)于y=x的對稱函數(shù)的是(填序號).
(2)若 )為關(guān)于y=x的對稱函數(shù).
①求k、b的值.
②對于任意的實數(shù)x,滿足x>m時, 恒成立,則m滿足的條件為
(3)若 為關(guān)于y=x的對稱函數(shù),且對于任意的實數(shù)x,都有 ,請結(jié)合函數(shù)的圖象,求n的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案