【題目】某校為了解九年級學(xué)生體育測試情況,以九年級(1)班學(xué)生的體育測試成績?yōu)闃颖,按A,B,C,D四個等級進(jìn)行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:

(說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下)
(1)請把條形統(tǒng)計圖補(bǔ)充完整;
(2)樣本中D級的學(xué)生人數(shù)占全班學(xué)生人數(shù)的百分比是;
(3)扇形統(tǒng)計圖中A級所在的扇形的圓心角度數(shù)是
(4)若該校九年級有600名學(xué)生,請樣本估計體育測試中A級學(xué)生人數(shù)約為 人.

【答案】
(1)解:條形統(tǒng)計圖補(bǔ)充如下:


(2)10%
(3)72°
(4)120
【解析】解:(1)總?cè)藬?shù)是:10÷20%=50,

則D級的人數(shù)是:50﹣10﹣23﹣12=5.

⑵D級的學(xué)生人數(shù)占全班學(xué)生人數(shù)的百分比是:1﹣46%﹣20%﹣24%=10%;(3)A級所在的扇形的圓心角度數(shù)是360×20%=72°;

⑷∵A級所占的百分比為20%,

∴A級的人數(shù)為:600×20%=120(人).

所以答案是10%;72°;120.

【考點精析】本題主要考查了扇形統(tǒng)計圖和條形統(tǒng)計圖的相關(guān)知識點,需要掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】乘法公式的探究及應(yīng)用:

數(shù)學(xué)活動課上,老師準(zhǔn)備了若干個如圖1的三種紙片,A種紙片邊長為的正方形,B種紙片是邊長為的正方形,C種紙片長為寬為的長方形,并用A種紙片一張,B種紙片一張,C種紙片兩張拼成如圖2的大正方形。

(1)請用兩種不同的方法表示圖2大正方形的面積:

方法1:_____________________;方法2:_____________________.

(2)觀察圖2,請你寫出下列三個代數(shù)式:之間的等量關(guān)系;

(3)類似的,請你用圖1中的三種紙片拼一個圖形驗證:

(4)根據(jù)(2)題中的等量關(guān)系,解決如下問題:

已知:的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB與y軸交于點A,與x軸交于點B,點A的縱坐標(biāo)、點B的橫坐標(biāo)如圖所示.

(1)求直線AB對應(yīng)的函數(shù)表達(dá)式;

(2)點P在直線AB上,是否存在點P使得三角形AOP的面積為1,如果存在,求出所有滿足條件的點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:(x﹣1+ )÷ ,其中x的值從不等式組 的整數(shù)解中選。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB是平角,DOE=90°,OC平分∠DOB.

(1)若AOE=32°,求BOC的度數(shù);

(2)若OD是AOC的角平分線,求AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,延長CB至點F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點E,N,M,連接EO.

(1)已知BD= ,求正方形ABCD的邊長;
(2)猜想線段EM與CN的數(shù)量關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明想要測量學(xué)校食堂和食堂正前方一棵樹的高度,他從食堂樓底M處出發(fā),向前走3米到達(dá)A處,測得樹頂端E的仰角為30°,他又繼續(xù)走下臺階到達(dá)C處,測得樹的頂端E的仰角是60°,再繼續(xù)向前走到大樹底D處,測得食堂樓頂N的仰角為45°.已知A點離地面的高度AB=2米,∠BCA=30°,且B,C,D三點在同一直線上.

(1)求樹DE的高度;
(2)求食堂MN的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等邊ABC中,在射線BA上有一點D,連接CD,并以CD為邊向上作等邊CDE,連接BEAE.試判斷下列結(jié)論:①AE=BD; AEAB所夾銳夾角為60°;③當(dāng)D在線段ABBA延長線上時,總有∠BDE-AED=2BDC;④∠BCD=90°時,CE2+AD2=AC2+DE2 .正確的序號有(

A. ①② B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于O,OE是∠AOC的平分線,OFCD,OGOE,∠BOD=52°

1)求∠AOC,∠AOF的度數(shù);

2)求∠EOF與∠BOG是否相等?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案