【題目】如圖,在△ABC中,∠A90°,ACAB,CD平分∠ACB,DEBC于點(diǎn)E,若BC15 cm,則△DEB的周長(zhǎng)為(

A.14 cmB.15 cm

C.16 cmD.17 cm

【答案】B

【解析】

先根據(jù)ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再將其代入△DEB的周長(zhǎng)中,通過(guò)邊長(zhǎng)之間的轉(zhuǎn)換得到,周長(zhǎng)=BD+DE+EB=BD+AD+EB=AB+BE

=AC+EB=CE+EB=BC,所以為15cm

解:∵CD平分∠ACB,DEBCE,∠A=90°,
AD=ED,

CD= CD
∴△ACD≌△ECD,
AC=EC,

ACAB,

AB=EC,

∴△DEB的周長(zhǎng)為:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=15cm

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,∠BAC=90°AB=AC,FBC上一點(diǎn),BDAF的延長(zhǎng)線與D,CEAFE,已知CE=5,BD=2,ED=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,過(guò)等邊三角形ABCAB上一點(diǎn)DDE∥BC交邊AC于點(diǎn)E,分別取BC,DE的中點(diǎn)M,N,連接MN.

(1)發(fā)現(xiàn):在圖1中,,說(shuō)明理由;

(2)探索:如圖2,將△ADE繞點(diǎn)A旋轉(zhuǎn),請(qǐng)求出的值;

(3)拓展:如圖3,△ABC△ADE是等腰三角形,且∠BAC=∠DAE,M,N分別是底邊BC,DF的中點(diǎn),若BD⊥CE,請(qǐng)直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,∠BAC30°,點(diǎn)D是△ABC內(nèi)一點(diǎn),DBDC,∠DCB30°,點(diǎn)EBD延長(zhǎng)線上一點(diǎn),AEAB

1)求證:△ABD≌△ACD

2)求∠ADE的度數(shù).

3)試猜想線段DE,ADDC之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線軸交于,兩點(diǎn),交軸于點(diǎn)

求拋物線的解析式;

點(diǎn)是第二象限內(nèi)一點(diǎn),過(guò)點(diǎn)軸交拋物線于點(diǎn),過(guò)點(diǎn)軸于點(diǎn),連接、,若.求的值并直接寫出的取值范圍(利用圖完成你的探究).

如圖,點(diǎn)是線段上一動(dòng)點(diǎn)(不包括點(diǎn)、),軸交拋物線于點(diǎn),交直線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,求的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在RtABC中,ACB=90°,AC=6cm,BC=8cm,點(diǎn)P從A出發(fā)沿AC向C點(diǎn)以1厘米/秒的速度勻速移動(dòng);點(diǎn)Q從C出發(fā)沿CB向B點(diǎn)以2厘米/秒的速度勻速移動(dòng).點(diǎn)P、Q分別從起點(diǎn)同時(shí)出發(fā),移動(dòng)到某一位置時(shí)所需時(shí)間為t秒.

(1)當(dāng)t=2時(shí),求線段PQ的長(zhǎng)度;

(2)當(dāng)t為何值時(shí),PCQ的面積等于5cm2?

(3)在P、Q運(yùn)動(dòng)過(guò)程中,在某一時(shí)刻,若將PQC翻折,得到EPQ,如圖2,PE與AB能否垂直?若能,求出相應(yīng)的t值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A、E重合),在AE同側(cè)分別作正△ABC和正△CDE,ADBE交于點(diǎn)OADBC交于點(diǎn)P,BECD交于點(diǎn)Q,連接PQ.以下五個(gè)結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°

恒成立的結(jié)論有 .(把你認(rèn)為正確的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分別為ABC三邊的長(zhǎng).

(1)如果x=-1是方程的根,試判斷ABC的形狀,并說(shuō)明理由;

(2)如果方程有兩個(gè)相等的實(shí)數(shù)根,試判斷ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)老板對(duì)一種新上市商品的銷售情況進(jìn)行記錄,已知這種商品進(jìn)價(jià)為每件40元,經(jīng)過(guò)記錄分析發(fā)現(xiàn),當(dāng)銷售單價(jià)在40元至90元之間(含40元和90元)時(shí),每月的銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似地看作一次函數(shù),其圖象如圖所示.

(1)求y與x的函數(shù)關(guān)系式.

(2)設(shè)商場(chǎng)老板每月獲得的利潤(rùn)為P(元),求P與x之間的函數(shù)關(guān)系式;

(3)如果想要每月獲得2400元的利潤(rùn),那么銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案