【題目】如圖,在△ABC中,∠A=90°,AC=AB,CD平分∠ACB,DE⊥BC于點(diǎn)E,若BC=15 cm,則△DEB的周長(zhǎng)為( )
A.14 cmB.15 cm
C.16 cmD.17 cm
【答案】B
【解析】
先根據(jù)ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再將其代入△DEB的周長(zhǎng)中,通過(guò)邊長(zhǎng)之間的轉(zhuǎn)換得到,周長(zhǎng)=BD+DE+EB=BD+AD+EB=AB+BE
=AC+EB=CE+EB=BC,所以為15cm.
解:∵CD平分∠ACB,DE⊥BC于E,∠A=90°,
∵AD=ED,
∵CD= CD,
∴△ACD≌△ECD,
∴AC=EC,
∵AC=AB,
∴AB=EC,
∴△DEB的周長(zhǎng)為:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=15cm.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,∠BAC=90°,AB=AC,F是BC上一點(diǎn),BDAF的延長(zhǎng)線與D,CEAF于E,已知CE=5,BD=2,ED=__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,過(guò)等邊三角形ABC邊AB上一點(diǎn)D作DE∥BC交邊AC于點(diǎn)E,分別取BC,DE的中點(diǎn)M,N,連接MN.
(1)發(fā)現(xiàn):在圖1中,,說(shuō)明理由;
(2)探索:如圖2,將△ADE繞點(diǎn)A旋轉(zhuǎn),請(qǐng)求出的值;
(3)拓展:如圖3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分別是底邊BC,DF的中點(diǎn),若BD⊥CE,請(qǐng)直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=30°,點(diǎn)D是△ABC內(nèi)一點(diǎn),DB=DC,∠DCB=30°,點(diǎn)E是BD延長(zhǎng)線上一點(diǎn),AE=AB.
(1)求證:△ABD≌△ACD.
(2)求∠ADE的度數(shù).
(3)試猜想線段DE,AD,DC之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與軸交于,兩點(diǎn),交軸于點(diǎn).
求拋物線的解析式;
點(diǎn)是第二象限內(nèi)一點(diǎn),過(guò)點(diǎn)作軸交拋物線于點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),連接、,若.求的值并直接寫出的取值范圍(利用圖完成你的探究).
如圖,點(diǎn)是線段上一動(dòng)點(diǎn)(不包括點(diǎn)、),軸交拋物線于點(diǎn),,交直線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,求的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,點(diǎn)P從A出發(fā)沿AC向C點(diǎn)以1厘米/秒的速度勻速移動(dòng);點(diǎn)Q從C出發(fā)沿CB向B點(diǎn)以2厘米/秒的速度勻速移動(dòng).點(diǎn)P、Q分別從起點(diǎn)同時(shí)出發(fā),移動(dòng)到某一位置時(shí)所需時(shí)間為t秒.
(1)當(dāng)t=2時(shí),求線段PQ的長(zhǎng)度;
(2)當(dāng)t為何值時(shí),△PCQ的面積等于5cm2?
(3)在P、Q運(yùn)動(dòng)過(guò)程中,在某一時(shí)刻,若將△PQC翻折,得到△EPQ,如圖2,PE與AB能否垂直?若能,求出相應(yīng)的t值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A、E重合),在AE同側(cè)分別作正△ABC和正△CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.以下五個(gè)結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.
恒成立的結(jié)論有 .(把你認(rèn)為正確的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分別為△ABC三邊的長(zhǎng).
(1)如果x=-1是方程的根,試判斷△ABC的形狀,并說(shuō)明理由;
(2)如果方程有兩個(gè)相等的實(shí)數(shù)根,試判斷△ABC的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)老板對(duì)一種新上市商品的銷售情況進(jìn)行記錄,已知這種商品進(jìn)價(jià)為每件40元,經(jīng)過(guò)記錄分析發(fā)現(xiàn),當(dāng)銷售單價(jià)在40元至90元之間(含40元和90元)時(shí),每月的銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似地看作一次函數(shù),其圖象如圖所示.
(1)求y與x的函數(shù)關(guān)系式.
(2)設(shè)商場(chǎng)老板每月獲得的利潤(rùn)為P(元),求P與x之間的函數(shù)關(guān)系式;
(3)如果想要每月獲得2400元的利潤(rùn),那么銷售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com