1.已知:如圖,AO、BO是⊙O的兩條半徑,點(diǎn)C在⊙O上,∠ACB=30°,則∠ABO的度數(shù)為( 。
A.30°B.45°C.50°D.60°

分析 根據(jù)圓周角定理求出∠AOB,根據(jù)等腰三角形性質(zhì)得出∠OBA=∠OAB,根據(jù)三角形內(nèi)角和定理求出即可.

解答 解:∵∠ACB=30°,
∴∠AOB=2∠ACB=60°,
∵OA=OB,
∴∠ABO=∠BAO=$\frac{1}{2}$×(180°-∠AOB)=60°,
故選D.

點(diǎn)評 本題考查了圓周角定理,等腰三角形性質(zhì),三角形的內(nèi)角和定理的應(yīng)用,解此題的關(guān)鍵是求出∠AOB度數(shù)和得出∠OAB=∠OBA.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.已知△ABC,求證∠A+∠B+∠C=180°.請?jiān)诶ㄌ柪锾钌线m當(dāng)?shù)睦碛桑?br />證明:過點(diǎn)A作直線EF∥BC
∴∠1=∠B,∠2=∠C兩直線平行,內(nèi)錯(cuò)角相等
∵EF是一條直線
∴∠EAF=180°平角的定義
又∵∠EAF=∠1+∠2+∠3
∴∠1+∠2+∠3=180°平角的定義
∴∠3+∠B+∠C=180°等量代換.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,在Rt△ABC中,∠C=90°,sinB=$\frac{3}{5}$,BC=5cm,以點(diǎn)C為圓心,以3cm的長為半徑作圓,則⊙C與AB的位置關(guān)系是( 。
A.相離B.相交C.相切D.相切或相交

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.已知△ABC中,∠A=2∠B,∠A=90°,求證:a2-b2=bc.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.為加強(qiáng)學(xué)生身體鍛煉,我校開展體育“大課間”活動(dòng).學(xué)校學(xué)生會體育部決定在學(xué)生中開設(shè)A:籃球,B:立定跳遠(yuǎn),C:跳繩,D:跑步,E:排球五種活動(dòng)項(xiàng)目.為了了解學(xué)生對五種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下圖所示的兩個(gè)統(tǒng)計(jì)圖.請結(jié)合圖中的信息解答下列問題:
(1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)請計(jì)算本項(xiàng)調(diào)查中喜歡“籃球”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校有1200名在校學(xué)生,請估計(jì)喜歡排球的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.已知:如圖,在平行四邊形ABCD中,E、F分別是邊AB和DC上的點(diǎn),且BE=DF.求證:AF=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.如圖,已知直線y=2x+6與x軸、y軸分別交于M,N兩點(diǎn),以O(shè)M為邊在x軸下方作等邊三角形OMP,現(xiàn)將△OMP沿y軸向上平移,當(dāng)點(diǎn)P恰好落在直線MN上時(shí),點(diǎn)P運(yùn)動(dòng)的路程為$\frac{3}{2}$$\sqrt{3}$+3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

10.如圖,矩形AOBC的面積為8,反比例函數(shù)y=$\frac{k}{x}$的圖象經(jīng)過矩形對角線的交點(diǎn)P,則反比例函數(shù)的解析式為y=$\frac{2}{x}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

11.∠AOB與∠BOC互為補(bǔ)角,OD平分∠AOB,∠3+∠2=90°,如圖所示.求證∠BOE=$\frac{1}{2}$∠BOC.請完成下列證明.
證明:因?yàn)椤螦OB與∠BOC互為補(bǔ)角(已知),
所以∠AOB+∠BOC=180°(補(bǔ)角的定義),
即L1+∠2+∠3+∠4=180°,又∵∠2+∠3=90°(已知),
∴∠1+∠4=90°(等式的性質(zhì)),
即∠1與L4互余,∠2與∠3互余(角平分線的定義。
因?yàn)镺D平分∠AOB,所以∠1=∠2(角平分線的定義。
所以∠3=∠4(余角的性質(zhì)。
即∠BOE=$\frac{1}{2}$∠BOC.

查看答案和解析>>

同步練習(xí)冊答案