【題目】對(duì)非負(fù)實(shí)數(shù)x四舍五入到個(gè)位的值記為(x).即當(dāng)n為非負(fù)整數(shù)時(shí),若nxn,則(x)n.(0.46)0(3.67)4.給出下列關(guān)于(x)的結(jié)論:①(1.493)1;②(2x)2(x);③若(x1)4,則實(shí)數(shù)x的取值范圍是9≤x11;④當(dāng)x≥0時(shí),m為非負(fù)整數(shù)時(shí),有(m2017x)m(2017x);⑤(xy)(x)(y).其中正確的結(jié)論有________________(填序號(hào))

【答案】①③④

【解析】

對(duì)于①可直接判斷;②、⑤可用舉反例法判斷;③、④我們可以根據(jù)題意所述利用不等式判斷.

解:①∵1-1.4931+,

(1.493)=1

故①正確;

(2x)=2(x),例如當(dāng)x=0.3時(shí),(2x)=1,2(x)=0,故②錯(cuò)誤;

③若(x-1)=4,則4-x-14+,解得:9x11,故③正確;

m為整數(shù),不影響“四舍五入”,故(m+2017x)=m+(2017x),故④正確;

(x+y)(x)+(y),例如x=0.3y=0.4時(shí),(x+y)=1,(x)+(y)=0,故⑤錯(cuò)誤.

綜上可得①③④正確.

故答案為:①③④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】是一張∠AOB45°的紙片折疊后的圖形,PQ分別是邊OA、OB上的點(diǎn),且OP2cm.將∠AOB沿PQ折疊,點(diǎn)O落在紙片所在平面內(nèi)的C(點(diǎn)C在∠AOB的內(nèi)部或一邊上)

(1)當(dāng)PCQB時(shí),OQ   cm

(2)當(dāng)折疊后重疊部分為等腰三角形時(shí),畫出示意圖,寫出OQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的圖像與x軸的交點(diǎn)坐標(biāo)為 ,則該函數(shù)的最小值是( )
A.2
B.-2
C.10
D.-10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的一塊地,AD=8 m,CD=6 m,∠ADC=90°,AB=26 m,BC=24 m.求這塊地的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點(diǎn),AE∥CD,CE∥AB,連接DE交AC于點(diǎn)O.

(1)證明:四邊形ADCE為菱形;
(2)證明:DE=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題正確的是( )
A.方程x2-4x+2=0無(wú)實(shí)數(shù)根;
B.兩條對(duì)角線互相垂直且相等的四邊形是正方形
C.甲、乙、丙三人站成一排合影留念,則甲、乙二人相鄰的概率是
D.若 是反比例函數(shù),則k的值為2或-1。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀與計(jì)算:請(qǐng)閱讀以下材料,并完成相應(yīng)的任務(wù).

斐波那契(約11701250)是意大利數(shù)學(xué)家,他研究了一列數(shù),這列數(shù)非常奇妙,被稱為斐波那契數(shù)列(按照一定順序排列著的一列數(shù)稱為數(shù)列).后來(lái)人們?cè)谘芯克倪^程中,發(fā)現(xiàn)了許多意想不到的結(jié)果,在實(shí)際生活中,很多花朵(如梅花、飛燕草、萬(wàn)壽菊等)的瓣數(shù)恰是斐波那契數(shù)列中的數(shù).斐波那契數(shù)列還有很多有趣的性質(zhì),在實(shí)際生活中也有廣泛的應(yīng)用.斐波那契數(shù)列中的第n個(gè)數(shù)可以用表示(其中,n≥1).這是用無(wú)理數(shù)表示有理數(shù)的一個(gè)范例.

任務(wù):請(qǐng)根據(jù)以上材料,通過計(jì)算求出斐波那契數(shù)列中的第1個(gè)數(shù)和第2個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠1=∠2,∠3=∠4,則下面結(jié)論中錯(cuò)誤的是( )

A. △ADC≌△BCD B. △ABD≌△BAC C. △AOB≌△COD D. △AOD≌△BOC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x,y

1)求x2+xy+y2

2)若x的小數(shù)部分為a,y的整數(shù)部分為b,求ax+by的平方根.

查看答案和解析>>

同步練習(xí)冊(cè)答案