如圖,已知反比例函數(shù)數(shù)學(xué)公式和一次函數(shù)y2=ax+b的圖象相交于點(diǎn)A和點(diǎn)D,且點(diǎn)A的橫坐標(biāo)為1,點(diǎn)D的縱坐標(biāo)為-1.過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,△AOB的面積為1.
(1)求反比例函數(shù)和一次函數(shù)的解析式.
(2)結(jié)合圖象直接寫(xiě)出:當(dāng)y1>y2時(shí),x的取值范圍.

解:(1)由A的橫坐標(biāo)為1,得到OB=1,
∵△AOB的面積為1,
AB•OB=1,即AB=1,
解得:AB=2,
∴A(1,2),
將A的坐標(biāo)代入反比例函數(shù)解析式得:2=,
解得:k=2,
∴反比例函數(shù)解析式為y1=;
又D的縱坐標(biāo)為-1,且D在反比例函數(shù)圖象上,
∴將y=-1代入反比例解析式得:-1=,
解得:x=-2,
∴D(-2,-1),
將A和D的坐標(biāo)代入一次函數(shù)y2=kx+b中得:
,
解得:,
∴一次函數(shù)解析式為y2=x+1;

(2)由圖象可知:當(dāng)y1>y2時(shí),x的取值范圍x<-2或0<x<1.
分析:(1)由A的橫坐標(biāo)得出OB的長(zhǎng),再由三角形AOB的面積為1,利用三角形面積公式求出AB的長(zhǎng),得出A的坐標(biāo),將A的坐標(biāo)代入反比例函數(shù)解析式中求出k的值,確定出反比例函數(shù)解析式;將D的縱坐標(biāo)代入反比例函數(shù)解析式中求出D的橫坐標(biāo),確定出D的坐標(biāo),將A和D的坐標(biāo)代入一次函數(shù)解析式中,得到關(guān)于k與b的二元一次方程組,求出方程組的解得到k與b的值,確定出一次函數(shù)解析式;
(2)由A和D的橫坐標(biāo)及原點(diǎn)橫坐標(biāo)0,將x軸分為四個(gè)范圍,找出反比例函數(shù)圖象在一次函數(shù)圖象上方時(shí)x的范圍即可.
點(diǎn)評(píng):此題考查了一次函數(shù)與反比例函數(shù)圖象的交點(diǎn)問(wèn)題,利用了待定系數(shù)法及數(shù)形結(jié)合的思想,靈活運(yùn)用待定系數(shù)法是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
m
x
圖象與一次函數(shù)y=kx+b的圖象均經(jīng)過(guò)A(-1,4)和B(a,
4
5
)兩點(diǎn),
(1)求B點(diǎn)的坐標(biāo)及兩個(gè)函數(shù)的解析式;
(2)若一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)C,求C點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
(k>0)的圖象經(jīng)過(guò)點(diǎn)A(2,m),過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,且S△AOB=3.若一次函數(shù)y=ax+1的圖象經(jīng)過(guò)點(diǎn)A,并且與x軸相交于點(diǎn)C,求AO:AC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
的圖象與一次函數(shù)y=ax+b的圖象交于M(2,m)和N(-1,-4)兩點(diǎn).
(1)求這兩個(gè)函數(shù)的解析式;
(2)求△MON的面積;
(3)請(qǐng)判斷點(diǎn)P(4,1)是否在這個(gè)反比例函數(shù)的圖象上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知反比例函數(shù)y1=
kx
和一次函數(shù)y2=ax+b的圖象相交于點(diǎn)A和點(diǎn)D,且點(diǎn)A的橫坐標(biāo)為1,點(diǎn)D的縱坐標(biāo)為-1.過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,△AOB的面積為1.
(1)求反比例函數(shù)和一次函數(shù)的解析式.
(2)若一次函數(shù)y2=ax+b的圖象與x軸相交于點(diǎn)C,求∠ACO的度數(shù).
(3)結(jié)合圖象直接寫(xiě)出:當(dāng)y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知反比例函數(shù)y=
k
x
的圖象經(jīng)過(guò)第二象限內(nèi)的點(diǎn)A(-1,m),AB⊥x軸于點(diǎn)B,△AOB的面積為2.若直線(xiàn)y=ax+b經(jīng)過(guò)點(diǎn)A,并且經(jīng)過(guò)反比例函數(shù)y=
k
x
的圖象上另一點(diǎn)C(n,一2).
(1)求直線(xiàn)y=ax+b的解析式;
(2)設(shè)直線(xiàn)y=ax+b與x軸交于點(diǎn)M,求AM的長(zhǎng);
(3)在雙曲線(xiàn)上是否存在點(diǎn)P,使得△MBP的面積為8?若存在請(qǐng)求P點(diǎn)坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案