【題目】已知:在⊙O中,AB是直徑,AC是弦,OE⊥AC于點E,過點C作直線FC,使∠FCA=∠AOE,交AB的延長線于點D.
(1)求證:FD是⊙O的切線;
(2)設(shè)OC與BE相交于點G,若OG=2,求⊙O半徑的長;
(3)在(2)的條件下,當OE=3時,求圖中陰影部分的面積.
【答案】(1)證明見解析(2)6;(3)
【解析】
試題分析:(1)要證FD是⊙O的切線只要證明∠OCF=90°即可;
(2)根據(jù)已知證得△OEG∽△CBG根據(jù)相似比不難求得OC的長;
(3)根據(jù)S陰影=S△OCD﹣S扇形OBC從而求得陰影的面積.
證明:(1)連接OC(如圖①),
∵OA=OC,
∴∠1=∠A.
∵OE⊥AC,
∴∠A+∠AOE=90°.
∴∠1+∠AOE=90°.
∵∠FCA=∠AOE,
∴∠1+∠FCA=90°.
即∠OCF=90°.
∴FD是⊙O的切線.
(2)連接BC,(如圖②)
∵OE⊥AC,
∴AE=EC(垂徑定理).
又∵AO=OB,
∴OE∥BC且.
∴∠OEG=∠GBC(兩直線平行,內(nèi)錯角相等),
∠EOG=∠GCB(兩直線平行,內(nèi)錯角相等),
∴△OEG∽△CBG(AA).
∴.
∵OG=2,
∴CG=4.
∴OC=OG+GC=2+4=6.
即⊙O半徑是6.
(3)∵OE=3,由(2)知BC=2OE=6,
∵OB=OC=6,
∴△OBC是等邊三角形.
∴∠COB=60°.
∵在Rt△OCD中,CD=OC×tan60°=6,
∴S陰影=S△OCD﹣S扇形OBC==.
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分分)已知在平面直角坐標系中,點是拋物線上的一個動點,點的坐標為.
(1).如圖1,直線過點且平行于軸,過點作,垂足為,連接,猜想與的大小關(guān)系: ______ (填寫“>”“<”或“=” ),并證明你的猜想.
(2).請利用(1)的結(jié)論解決下列問題:
①.如圖2,設(shè)點的坐標為, 連接,問是否存在最小值?如果存在,請說明理由,并求出點的坐標;如果不存在,請說明理由.
②.若過動點和點的直線交拋物線于另一點,且,求直線的解析式(圖3為備用圖).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B兩點.
(1)求反比例函數(shù)的表達式及點B的坐標;
(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠承接了一批紙箱加工任務(wù),用如圖1所示的長方形和正方形紙板(長方形的寬與正方形的邊長相等)加工成如圖所示的豎式與橫式兩種無蓋的長方形紙箱.(加工時接縫材料不計)
若該廠購進正方形紙板1000張,長方形紙板2000張.問豎式紙盒,橫式紙盒各加工多少個,恰好能將購進的紙板全部用完;
該工廠某一天使用的材料清單上顯示,這天一共使用正方形紙板50張,長方形紙板a張,全部加工成上述兩種紙盒,且120<a<136,試求在這一天加工兩種紙盒時,a的所有可能值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列計算正確的是( )
A.b5b5=2b5
B.(an﹣1)3=a3n﹣1
C.a+2a2=3a3
D.(a﹣b)5(b﹣a)4=(a﹣b)9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com