【題目】如圖1,在直角坐標系中,已知點A(0,2)、點B(-2,0),過點B和線段OA的中點C作直線BC,以線段BC為邊向上作正方形BCDE.
(1)填空:點D的坐標為_________,點E的坐標為_______________.
(2)若拋物線經過A、D、E三點,求該拋物線的解析式.
(3)若正方形和拋物線均以每秒個單位長度的速度沿射線BC同時向上平移,直至正方形的頂點E落在軸上時,正方形和拋物線均停止運動.
①在運動過程中,設正方形落在y軸右側部分的面積為,求關于平移時間(秒)的函數關系式,并寫出相應自變量的取值范圍.
②運動停止時,求拋物線的頂點坐標.
【答案】(1)D的坐標為(-1,3),E的坐標為(-3,2);
(2)拋物線的解析式為;
(3)①S與x的函數關系式為:
當0<t≤時, S=5
當<t≤1時,S=5t
當1<t≤時,S=-5t2+15t
②拋物線的頂點坐標是(, ).
【解析】(1)D(-1,3)、E(-3,2)(2分)
(2)拋物線經過(0,2)、(-1,3)、(-3,2),則
解得
∴
(3)①當點D運動到y軸上時,t=.
當0<t≤時,如右圖
設D′C′交y軸于點F
∵tan∠BCO= =2,又∵∠BCO=∠FCC′
∴tan∠FCC′=2, 即=2
∵CC′= t,∴FC′=2t.
∴S△CC′F =CC′·FC′= t×t=5 t2
當點B運動到點C時,t=1.當<t≤1時,如右圖
設D′E′交y軸于點G,過G作GH⊥B′C′于H.
在Rt△BOC中,BC=
∴GH= ,∴CH=GH=
∵CC′=t,∴HC′=t-,∴GD′=t-
∴S梯形CC′D′G =(t-+ t) =5t-
當點E運動到y軸上時,t=.
當1<t≤時,如右圖所示
設D′E′、E′B′分別交y軸于點M、N
∵CC′=t,B′C′=,
∴CB′=t-,∴B′N=2CB′=t-
∵B′E′=,∴E′N=B′E′-B′N=-t
∴E′M=E′N=(-t)
∴S△MNE′ =(-t)· (-t)=5t2-15t+
∴S五邊形B′C′D′MN =S正方形B′C′D′E′ -S△MNE′ = (5t2-15t+)=-5t2+15t-
綜上所述,S與x的函數關系式為:
當0<t≤時, S=5
當<t≤1時,S=5t
當1<t≤時,S=-5t2+15t
②當點E運動到點E′時,運動停止.如下圖所示
∵∠CB′E′=∠BOC=90°,∠BCO=∠B′CE′
∴△BOC∽△E′B′C
∴
∵OB=2,B′E′=BC=
∴
∴CE′=
∴OE′=OC+CE′=1+=
∴E′(0,)
由點E(-3,2)運動到點E′(0, ),可知整條拋物線向右平移了3個單位,向上平移了個單位.
∵=
∴原拋物線頂點坐標為(, )
∴運動停止時,拋物線的頂點坐標為(, )
科目:初中數學 來源: 題型:
【題目】“陽光體育”運動關乎每個學生未來的幸福生活,今年五月,我市某校開展了以“陽光體育我是冠軍”為主題的一分鐘限時跳繩比賽,要求每個班選2﹣3名選手參賽,現(xiàn)將80名選手比賽成績(單位:次/分鐘)進行統(tǒng)計.繪制成頻數分布直方圖,如圖所示.
(1)圖中a值為 .
(2)將跳繩次數在160~190的選手依次記為A1、A2、…An,從中隨機抽取兩名選手作經驗交流,請用樹狀或列表法求恰好抽取到的選手A1和A2的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,長方形AOBC在直角坐標系中,點A在y軸上,點B在x軸上,已知點C的坐標是(8,4).
(1)求對角線AB所在直線的函數關系式;
(2)對角線AB的垂直平分線MN交x軸于點M,連接AM,求線段AM的長;
(3)若點P是直線AB上的一個動點,當△PAM的面積與長方形OABC的面積相等時,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,點A(0,6),B(8,0),點C是線段AB的中點,CD⊥OB交OB于D,Rt△EFH的斜邊EH在射線AB上,頂點F在射線AB的左側,EF∥OA,點E從點A出發(fā),以每秒1個單位的速度向B運動,到點B停止,AE=EF,運動時間為t(s).
(1)在Rt△EFH中,EF= ,EH= ,點F坐標為( , )(用含t的代數式表示)
(2)t為何值時,H與C重合?
(3)設△EFH與△CDB重疊部分圖形的面積為S(S>0),求S與t的函數關系式。
(4)在整個運動過程中,Rt△EFH掃過的面積是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列二次函數中,圖象以直線x=2為對稱軸、且經過點(0,1)的是 ( )
A.y=(x-2)2+1B.y=(x+2)2+1
C.y=(x-2)2-3D.y=(x+2)2-3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知多項式ax5+bx3+3x+c,當x=0時,該代數式的值為﹣1.
(1)求c的值;
(2)已知當x=3時,該式子的值為9,試求當x=﹣3時該式子的值;
(3)在第(2)小題的已知條件下,若有3a=5b成立,試比較a+b與c的大?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com