【題目】已知A、B兩個(gè)蔬菜市場(chǎng)各有蔬菜14噸,現(xiàn)要全部運(yùn)往甲、乙兩地,其中甲地需要蔬菜15噸,乙地需要蔬菜13噸,從蔬菜市場(chǎng)A到甲地運(yùn)費(fèi)50/噸,到乙地30/噸;從蔬菜市場(chǎng)B到甲地運(yùn)費(fèi)60/噸,到乙地45/噸。

1)設(shè)從蔬菜市場(chǎng)A向甲地運(yùn)送蔬菜x噸,請(qǐng)完成下表:

運(yùn)往甲地(單位:噸)

運(yùn)往乙地(單位:噸)

蔬菜市場(chǎng)A

x

蔬菜市場(chǎng)B

2)若總運(yùn)費(fèi)為1300元,則從蔬菜市場(chǎng)A向甲地運(yùn)送蔬菜多少噸?

【答案】114-x15-x,x-1;(25

【解析】

1)根據(jù)A地到甲地運(yùn)送蔬菜x噸,則B地到甲地(15-x)噸,再由A、B兩地的蔬菜量,可得AB運(yùn)往乙地的數(shù)量.

2)根據(jù)題意,列出方程求解即可.

解:(1)如下表:

運(yùn)往甲地(單位:噸)

運(yùn)往乙地(單位:噸)

蔬菜市場(chǎng)A

x

14-x

蔬菜市場(chǎng)B

15-x

x-1

故答案為:14-x,15-x,x-1

2)解:設(shè)從蔬菜市場(chǎng)A向甲地運(yùn)送蔬菜x

解得:,

答:從蔬菜市場(chǎng)A向甲地運(yùn)送蔬菜5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在四邊形ABCD中,如果對(duì)角線ACBD相交并且相等,那么我們把這樣的四邊形稱為等角線四邊形.

1)在“平行四邊形、矩形、菱形,正方形”中, 一定是等角線四邊形(填寫(xiě)圖形名稱);

2)若M、N、P、Q分別是等角線四邊形ABCD四邊AB、BC、CD、DA的中點(diǎn),當(dāng)對(duì)角線AC、BD還要滿足 時(shí),四邊形MNPQ是正方形;

3)如圖2,已知△ABC中,∠ABC90°,AB4,BC3,D為平面內(nèi)一點(diǎn).若四邊形ABCD是等角線四邊形,且ADBD,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)EF分別是AB、CD上的點(diǎn),點(diǎn)GBC的延長(zhǎng)線上一點(diǎn),且∠B=DCG=D 則下列判斷錯(cuò)誤的是(

A.BEF=EFDB.A=BCFC.AEF=EBCD.BEF+EFC=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(8分)如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(-3,2),B(-1,4),C(0,2).

(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C

(2)平移△ABC,若A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(-5,-2),畫(huà)出平移后的△A2B2C2;

(3)若將△A2B2C2繞某一點(diǎn)旋轉(zhuǎn)可以得到△A1B1C,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在正方形ABCD外取點(diǎn)E,連接AE、BE、DE.過(guò)點(diǎn)AAE的垂線交DE于點(diǎn)P,已知AE=AP=BE=1.

(1)求證:△APD≌△AEB;

(2)連接PC,求線段PC的長(zhǎng)度;

(3)試求正方形ABCD的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點(diǎn)E,∠ABC的平分線交AD于點(diǎn)F,若BF=12AB=10,則AE的長(zhǎng)為(  )

A. 13B. 14C. 15D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在互聯(lián)網(wǎng)技術(shù)的影響下,幸福新村的村民小劉在網(wǎng)上銷(xiāo)售蘋(píng)果,原計(jì)劃每天賣(mài)100千克,但實(shí)際每天的銷(xiāo)量與計(jì)劃銷(xiāo)量相比有出入,如表是某周的銷(xiāo)售情況(超額記為正,不足記為負(fù).單位:千克):

星期

與計(jì)劃量的差值

1)根據(jù)表中的數(shù)據(jù)可知前三天共賣(mài)出___________千克;

2)根據(jù)記錄的數(shù)據(jù)可知銷(xiāo)售量最多的一天比銷(xiāo)售量最少的一天多銷(xiāo)售多少千克?

3)若每千克按5元出售,每千克蘋(píng)果的運(yùn)費(fèi)為1元,那么小劉本周一共收入多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,∠A=30°,BC=2,CD是斜邊AB上的高,點(diǎn)E為邊AC上一點(diǎn)(點(diǎn)E不與點(diǎn)A、C重合),聯(lián)結(jié)DE,作CF⊥DE,CF與邊AB、線段DE分別交于點(diǎn)F、G;

(1)求線段CD、AD的長(zhǎng);

(2)設(shè)CE=x,DF=y,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出它的定義域;

(3)聯(lián)結(jié)EF,當(dāng)△EFG與△CDG相似時(shí),求線段CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.

其中正確結(jié)論的個(gè)數(shù)是(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案