【題目】如圖,把長(zhǎng)方形紙片ABCD沿EF折疊后,使得點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′的位置上.
(1)折疊后,DC的對(duì)應(yīng)線(xiàn)段是 ,CF的對(duì)應(yīng)線(xiàn)段是 .
(2)若∠1=55°,求∠2、∠3的度數(shù);
(3)若AB=6,AD=12,求△BC′F的面積.
【答案】(1)BC′, FC′;(2)∠2=55°,∠3=70°;(3).
【解析】
(1)根據(jù)翻折性質(zhì)即可解決問(wèn)題.
(2)利用翻折的性質(zhì)以及平行線(xiàn)的性質(zhì)解決問(wèn)題即可.
(3)根據(jù)ASA可證明△ABE≌△C′BF,求出△ABE的面積即可.
解:(1)折疊后,DC的對(duì)應(yīng)線(xiàn)段是BC′,CF的對(duì)應(yīng)線(xiàn)段是FC′.
故答案為BC′,FC′.
(2)由翻折的性質(zhì)可知:∠2=∠BEF,
∵AD∥BC,
∴∠2=∠1=55°,
∴∠3=180°﹣2×55°=70°.
(3)設(shè)DE=EB=x,
在Rt△ABE中,∵BE2=AB2+AE2,
∴62+(12﹣x)2=x2,
∴
∵∠ABC=∠EBC′,
∴∠ABC-∠EBF=∠EBC′-∠EBF
∴∠ABE=∠FBC′,
在矩形ABCD中AB=CD
又∵BC′=CD
∴AB=BC′
∵∠A=∠C′=90°
∴△ABE≌△C′BF(ASA),
∴S△BFC′=S△ABE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù) y=ax2+bx+c(a≠0)的圖象如圖所示,對(duì)稱(chēng)軸是直線(xiàn) x=1,下列結(jié)論:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0其中正確的是( ).
A. ①②③④ B. ①②④ C. ①③④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是等邊三角形,D為AC邊上的一點(diǎn),DG∥AB,延長(zhǎng)AB到E,使BE=GD,連接DE交BC于F.
(1)求證:GF=BF;
(2)若△ABC的邊長(zhǎng)為a,BE的長(zhǎng)為b,且a,b滿(mǎn)足(a﹣7)2+(b﹣3)2=0,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】大豐區(qū)在創(chuàng)建全國(guó)文明城市過(guò)程中,決定購(gòu)買(mǎi)A,B兩種樹(shù)苗對(duì)某路段道路進(jìn)行綠化改造,已知購(gòu)買(mǎi)A種樹(shù)苗5棵,B種樹(shù)苗10棵,需要1300元;購(gòu)買(mǎi)A種樹(shù)苗3棵,B種樹(shù)苗5棵,需要710元.
(1)求購(gòu)買(mǎi)A,B兩種樹(shù)苗每棵各需要多少元?
(2)現(xiàn)需購(gòu)進(jìn)這兩種樹(shù)苗共100棵,其中A種樹(shù)苗購(gòu)進(jìn)x棵,考慮到綠化效果和資金周轉(zhuǎn),A種樹(shù)苗不能少于30棵,且用于購(gòu)買(mǎi)這兩種樹(shù)苗的資金不能超過(guò)8650元,試求x 的取值范圍。
(3)某包工隊(duì)承包了該項(xiàng)種植任務(wù),若種好一棵A種樹(shù)苗需付工錢(qián)15元,種好一棵B種樹(shù)苗需付工錢(qián)25元,在(2)的條件下,設(shè)種好這100棵樹(shù)苗共需付工錢(qián)y元,,試求出y與x的函數(shù)表達(dá)式,并寫(xiě)出所付的種植工錢(qián)最少的購(gòu)買(mǎi)方案及最少工錢(qián)是多少元。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O為AC中點(diǎn),若點(diǎn)D在直線(xiàn)BC上運(yùn)動(dòng),連接OE,則在點(diǎn)D運(yùn)動(dòng)過(guò)程中,則OE的最小值是為( 。
A.B.0.25C.1D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=8cm,BC=6cm.點(diǎn)P從A點(diǎn)出發(fā)沿A→C→B路徑以每秒1cm的運(yùn)動(dòng)速度向終點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)Q從B點(diǎn)出發(fā)沿B→C→A路徑以每秒vcm的速度向終點(diǎn)A運(yùn)動(dòng).分別過(guò)P和Q作PE⊥AB于E,QF⊥AB于F.
(1)設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t= 時(shí),直線(xiàn)BP平分△ABC的面積.
(2)當(dāng)Q在BC邊上運(yùn)動(dòng)時(shí)(t>0),且v=1時(shí),連接AQ、連接BP,線(xiàn)段AQ與BP可能相等嗎?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.
(3)當(dāng)Q的速度v為多少時(shí),存在某一時(shí)刻(或時(shí)間段)可以使得△PAE與△QBF全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,△OA1B1是邊長(zhǎng)為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點(diǎn)B1成中心對(duì)稱(chēng),再作△B2A3B3與△B2A2B1關(guān)于點(diǎn)B2成中心對(duì)稱(chēng),如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點(diǎn)A2n+1的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=x2+bx+c的對(duì)稱(chēng)軸為x=2,且過(guò)點(diǎn)C(0,3)
(1)求此拋物線(xiàn)的解析式;
(2)證明:該拋物線(xiàn)恒在直線(xiàn)y=﹣2x+1上方.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形紙片放入以所在直線(xiàn)為軸,邊上一點(diǎn)為坐標(biāo)原點(diǎn)的平面直角坐標(biāo)系中,連結(jié)。將紙片沿折疊,點(diǎn)恰好落在邊上點(diǎn)處,若,則點(diǎn)的坐標(biāo)為________________。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com