如圖,已知梯形ABCO的底邊AO在x軸上,BC∥AO,AB⊥AO,過點C的雙曲線交OB于D,且OD:DB=1:2,若△OBC的面積等于3,則k的值( 。

A.等于2B.等于C.等于D.無法確定

B

解析試題分析:先設出B點坐標,即可表示出C點坐標,根據(jù)三角形的面積公式和反比例函數(shù)的幾何意義即可解答.
解:方法1:設B點坐標為(a,b),
∵OD:DB=1:2,
∴D點坐標為(a,b),
根據(jù)反比例函數(shù)的幾何意義,
a•b=k,
∴ab=9k①,
∵BC∥AO,AB⊥AO,C在反比例函數(shù)y=的圖象上,
∴設C點橫坐標為m,
則C點坐標為(m,b)
將(m,b)代入y=得,
m=,
BC=a﹣
又因為△OBC的高為AB,
所以S△OBC=(a﹣)•b=3,
所以(a﹣)•b=3,
(a﹣)b=6,
ab﹣k=6②,
把①代入②得,
9k﹣k=6,
解得k=
方法2:延長BC交y軸于E,過D作x軸的垂線,垂足為F.
由△OAB的面積=△OBE的面積,△ODF的面積=△OCE的面積,
可知,△ODF的面積=梯形DFAB=△BOC的面積=,
k=,
k=
故選B.

考點:反比例函數(shù)系數(shù)k的幾何意義.
點評:本題考查了反比例系數(shù)k的幾何意義.此題還可這樣理解:當滿足OD:DB=1:2時,當D在函數(shù)圖象上運動時,面積為定值.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

9、如圖,已知梯形ABCD中,AD∥BC,BE平分∠ABC,BE⊥CD,∠A=110°,AD=3,AB=5,則BC的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

設△A1B1C1的面積是S1,△A2B2C2的面積為S2(S1<S2),當△A1B1C1∽△A2B2C2,且0.3≤
S1S2
≤0.4
時,則稱△A1B1C1與△A2B2C2有一定的“全等度”.如圖,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,連接AC.
(1)若AD=DC,求證:△DAC與△ABC有一定的“全等度”;
(2)你認為:△DAC與△ABC有一定的“全等度”正確嗎?若正確,說明理由;若不正確,請舉出一個反例說明.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在△ABC中,∠B=90°,AB=28cm,BC=28cm,點P從點A開始沿AB邊向點B以3cm/s的速度移動,點Q從點B開始沿BC邊向點C以1cm/s的速度移動,P,Q分別從A,B同時出發(fā),當其中一精英家教網(wǎng)點到達終點時,另一點也隨之停止.過Q作QD∥AB交AC于點D,連接PD,設運動時間為t秒時,四邊形BQDP的面積為s.
(1)用t的代數(shù)式表示QD的長.
(2)求s關于t的函數(shù)解析式,并求出運動幾秒梯形BQDP的面積最大?最大面積是多少?
(3)連接QP,在運動過程中,能否使△DPQ為等腰三角形?若存在,求出t的值,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•遂寧)如圖,已知等腰△ABC的面積為4cm2,點D、E分別是AB、AC邊的中點,則梯形DBCE的面積為
3
3
 cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀理解

(1)如圖①,△ABC中,D是BC中點,連接AD,直接回答S△ABD與S△ADC相等嗎?
相等
相等
(S表示面積);
應用拓展
(2)如圖②,已知梯形ABCD中,AD∥BC,E是AB的中點,連接DE、EC,試利用上題得到的結(jié)論說明S△DEC=S△ADE+S△EBC;
解決問題
(3)現(xiàn)有一塊如圖③所示的梯形試驗田,想種兩種農(nóng)作物做對比實驗,用一條過D點的直線,將這塊試驗田分割成面積相等的兩塊,畫出這條直線,并簡單說明另一點的位置.

查看答案和解析>>

同步練習冊答案